

The Doane Roverbot Simulator

Cole Buss, Allen Gilbert, Nate Paisley, and Jason Sillasen
IST Department
Doane College

Crete, NE 68333
[cole.buss, allen.gilbert, nate.paisley, jason.sillasen]@doane.edu

Abstract

As part of Doane College’s 2004 Summer Research Program, we undertook the task of
creating a 3D simulator to run programs written for a Lego® Mindstorms™ “Roverbot.”
We coded our simulator in Java and Java3D because of their extensive documentation,
cross-platform nature, and unbeatable cost. Using both freeware CAD programs and the
Java3D API, we created models of the Roverbot and its test environment. We gathered
physical data about real Roverbots and how they function in the real world, and then
attempted to translate our findings into code that would appropriately affect our
simulation.

Although our current simulator is not complete, our work has provided a good framework
for future improvements, and the experience of creating such a simulator has increased
both our knowledge and respect for software design.

 1

1 Introduction

Over the past few decades, the importance of computer-aided simulation has been firmly
established. From advances in space travel to improvements in city traffic control, the
ability to simulate real-world events with virtual visualization has proven to be a time and
cost efficient way to solve problems. The possibility to reap these analytical benefits of
simulation provided excellent motivation for the creation of our Lego® Mindstorms™
(1) Roverbot simulator during our 2004 Summer Research Project. Our vision for the
simulator was for it to allow development of Roverbot programs without need for the
actual Roverbot hardware. We strove to provide a virtual environment for testing
Roverbot control programs without having to repeatedly beam revisions to the physical
robot, thus saving time and battery power. Furthermore, we wanted the simulator to
allow multiple people to work on the same project and be able to individually test control
programs without needing multiple Lego kits.

To better understand our project, one must first be familiarized with the concept behind
Lego Mindstorms Robot Kits. In the words of Lego’s website,

LEGO® MINDSTORMS™ lets you design and program real robots that do what
you want them to. With the Robotics Invention System 2.0™, the core set of the
LEGO MINDSTORMS product range, you can create everything from a light-
sensitive intruder alarm to a robotic rover that can follow a trail, move around
obstacles, and even duck into dark corners. (1)

The operation of robots built with the Mindstorms kits is controlled by a microcomputer
housed inside an “RCX brick.” This yellow brick includes three motor control outputs,
three sensor inputs, operational buttons, a digital display, and an infrared receiver. A user
can create control programs using bundled Lego software that provides a visual
representation of structured programming. Thus, the Lego Mindstorms kits are useful for
teaching the basics of programming to beginners.

The Roverbot (pictured in Figure 1) is a simple robot with two different kinds of sensor
inputs. The front of the robot houses two bumper sensors that can detect and prompt a
reaction to a collision. Although not pictured below, our Roverbot also houses a front-
mounted light sensor that can react to differences of dark and light in its path. Two
motors drive both the front and back wheel on each side, providing mobility. Thus,
turning is accomplished by giving more power to one pair of wheels over the other, or by
driving the motors in opposite directions.

Our Roverbot’s test environment is a 4 x 8 foot wooden “arena” with one-inch ridges on
each side. Figure 2 pictures this environment with obstacles (for use with the bumper
sensor) and blue tape (for use with the light sensor).

 2

Figure 1: A Real Roverbot

Figure 2: The Roverbot Test Environment

In this paper we will discuss the tools we used to create our simulator, the methods we
used to create our 3D content, how we modeled the behavior of a real Roverbot, our P-
Brick Script code compiler and interpreter, the Graphical User Interface of our simulator,
and our future plans for the simulator.

 3

2 Tools

Our project leader and professor, Mark Meysenburg, decided that we would use Java 1.4
and Java 3D 1.3.1 (2) as our programming languages for the simulator because of their
extensive documentation, cross-platform nature, and cost-free availability. Furthermore,
we were introduced to NetBeans, a freeware Java development environment that
provided, among other powerful features, a revision control system. This system allowed
us to keep track of our latest versions of code, while multiple project members worked
concurrently on the same project. We also used other freeware programs for content
creation. These tools are described in the following sections.

3 Content Creation

After familiarizing ourselves with the basics of Java and the NetBeans development
environment, we set out to create the “external” part of our simulator: 3D models of the
Roverbot and its test environment. To construct our virtual environment, we simply
mapped out the x, y, and z coordinates of each vertex of the physical test environment
and then used that information to construct a 3D representation. We used the same
process to make our rectangular obstacles and then added contrast to our models using
the simple Java3D coloring system. As for lighting and shading, Java3D provided a
default lighting scheme that suited our needs for a basic simulator.

3.1 CAD-Created Geometry

The creation of our Roverbot model was more involved, as we wanted to create a
realistic-looking virtual representation. Thankfully, we were able to utilize a fantastic
freeware program called MLCad (Mike’s Lego CAD) (3). This program allowed us to
create digital Lego models using a vast library of individual Lego pieces. These pieces
were polygonal data files defined by another freeware program, Ldraw (4). Ldraw’s
website provided downloadable parts libraries as well as detailed information about the
specifications of the Ldraw file format. By using these programs to create our model, we
spared ourselves from the difficulty of having to define each vertex of each surface (as
with the creation of our virtual environment). After completing our detailed Roverbot
model, we saved it in the Ldraw file format and then converted it to a Wavefront .obj file
using the LdrDat2 freeware program (5). We were then able to load the Wavefront file
into Java3D objects.

Although the converter did a very good job of translating the vertices for use with
Java3D, it was unable to convert the color data from MLCad into a form that Java3D
could recognize. Consequently, we had to color the model by opening the Java3D model
file in a text editor and replacing each reference to a color with a useable Java3D
counterpart.

 4

Another difficulty we encountered dealt with scaling. In the conversion process, our
CAD-generated models were “blown up” so that they were much, much too large.
Therefore, in our Java classes representing the Roverbot model, we had to scale the
geometry down to make the Roverbot model match the dimensions of the physical robot.

Figure 3 shows the Roverbot model we created using this process. The model has a high
level of detail, and a correspondingly high number of polygons to render.

Figure 3: High-Polygon Roverbot Model

3.2 Hand-Coded Geometry

As mentioned above, some of our 3D models were “hand coded” rather than being
developed through CAD software. Some of the models were simple enough to make
CAD software overkill. In particular, our models of the 4 x 8 Roverbot “world” and the
obstacles placed on the world were simple rectangular shapes. For these models, we
made measurements and hand-coded vertex information directly into the corresponding
Java classes.

Recognizing that lower-end hardware would not be able to effectively render our high
polygon Roverbot model in a simulation, we also decided to create a low-polygon
alternative. Initially, we created a low-polygon model by including only the CAD-
generated RCX brick and bumpers, and by representing the wheels with simple cylinders.
However, this still resulted in a relatively high polygon count, due to the numerous Lego
studs on the RCX brick, the holes in the bumpers, and so on. To further reduce the
number of polygons, we created another model using only hand-coded vertex

 5

information. The resulting model, shown in Figure 4, has reasonable fidelity and loads
much faster than the high-polygon model.

Another object we hand-coded was the shadow that appears under the high-polygon
Roverbot model.

Figure 4: Low-Polygon Roverbot Model

4 Roverbot Behavior Modeling

After creating the “externals” for our simulator, we began the creation of a physics
model. In order to accurately portray the Roverbot’s movement, we had to study a real
Roverbot in motion.

First, we needed an understanding of the speed of the robot at different power levels.
Each motor could be programmed to rotate in either direction, at one of ten different
power levels. To measure this aspect of Roverbot movement, we used a motion sensor
provided by our physics department. We had the robot move towards the motion sensor
at each power level, and from a position versus time graph displayed on a computer, we
were able to calculate the speed of the robot at each level.

Next, we measured the torque exerted by the Roverbot’s tires at each power level by
connecting a force sensor to a single tire and using a computer to give us a readout of the
measurements. We also calculated the total weight of the robot so that we would know
the normal force exerted by the world on the robot. Using these measurements, we could

 6

create a physics model to move the Roverbot accurate distances in the correct amount of
time.

Rotating our simulated Roverbot was another challenge to tackle with our physics model.
Rotation was tricky because the physical Roverbot would turn a different amount
depending on the power setting of the motors. For simplicity, we only had one side of
tires rotating (only one motor on) when calculating the angle of rotation. We placed the
robot on a table and marked where each tire was. Consequently, we discovered that the
robot was rotating around its rear stationary tire. Using a protractor, we marked the
location of the tires after a one-second turn and then determined what angle the Roverbot
had rotated through. We were then able to calculate how far the robot would rotate at
each power level, given the time, using various trigonometric equations.

As mentioned earlier, we performed the turns with only one set of tires rotating.
However, it is possible to make one set of tires rotate backward while the other set rotates
forward, allowing for a sharper turn or a spin. Because an object rotates about its center
of mass, we needed to calculate the center of mass of the robot. Using the measurements
we took of the size of the RCX block and the tires, we calculated the center of mass of
the entire object. We found that it was slightly to the rear of the robot (because of the
large rear tires), but centered from side to side, because of the robot’s symmetry. With
this information, we were able to program our simulated robot to rotate about its center of
mass when performing a “spin” turn.

5 P-Brick Script Compiler and Interpreter

Another key aspect of our simulator was the ability to load and execute programs
developed in the Lego Mindstorms programming environment. Although programs are
developed graphically in this environment, they are actually saved as plain text files. We
developed Java classes to read these P-Brick Script code files, compile them into a
custom byte-code format, and then interpret the byte-code to move the simulated
Roverbot accordingly. In order to do this, we needed to understand the P-Brick Script
language. Once we understood the language we could build the compiler and the
interpreter.

We found that the P-Brick Script language has syntax somewhat similar to C. A simple
program is shown in Figure 5.

We developed a pre-processor class to make compilation of the P-Brick Script programs
simpler. The pre-processor removes comments and “#include” lines, expands macros,
and adds whitespace so that the code is easier to parse.

After pre-processing, our compiler class converts the program into a custom byte code
format. The byte code has commands for motor control, sensors, and timers, as well as
mathematical operations, control structures, conditions, and so on.

 7

A third class represents the Roverbot controller. This class interprets the byte code
produced by our compiler and moves the simulated Roverbot accordingly.

program test {

 #include <RCX2.h>
 #include <RCX2MLT.h>
 #include <RCX2Sounds.h>
 #include <RCX2Def.h>

 main {
 ext InterfaceType "kRoverBot"
 rcx_ClearTimers
 bbs_GlobalReset([A B C])
 try {
 bb_Forward(A, C, 100)
 bb_TurnLeft(A, C, 100)
 bb_TurnRight(A, C, 100)
 bb_Backward(A, C, 100)
 } retry on fail
 }

}

Figure 5: Sample RCX-Code Program

Our P-Brick Script code compiler currently has basic functionality, but it is not complete.
The sounds that can be generated from a RCX brick are not supported, for example. In
addition, we were not able to incorporate sensors into the controller class.

6 Graphical User Interface

We created a simple Graphical User Interface for the simulator. The GUI allows users to
load and execute programs, and also supports different views of the simulated world. The
view can be changed to pre-set positions via menu options, or manipulated manually with
the mouse and keyboard. A screen shot of the GUI is shown in Figure 6.

We wanted a splash screen that would allow the user to choose whether to use a low or
high polygon Roverbot. We created an image for this splash screen by rendering our
high-polygon model using a freeware program called POV-Ray (6). Our GUI and splash
screen were created using the NetBeans IDE. The splash screen is shown in Figure 7.

Our GUI has basic functionality, but more features need to be added. We would like to be
able to place obstacles and blue tape on the world, and to be able to pick up and move
objects in the simulator. In addition, the manual view manipulation is currently

 8

cumbersome. We would like to improve this in future versions of the simulator. These
concerns are addressed in the Future Work section below.

Figure 6: Doane Roverbot Simulator GUI

Figure 7: DRS Splash Screen

7 Future Work

There are several aspects of our simulator that we are planning to improve in order to
more faithfully mimic the behavior of the physical Roverbot. In particular, we intend to
implement a collision detection system in order to support bumper sensor events. We
will also modify our interpreter to provide support for other sensor events (namely, the

 9

light sensor) as well as other less common RCX functions. Additionally, we plan to
improve the fidelity of the physics model underlying the movement of the simulated
Roverbot. Finally, we want to enhance our Graphical User Interface with features that
allow placement of obstacle blocks, placement of “blue tape” (for use with the light
sensor), and more flexibility in terms of viewing angles presented to the user.

Work on the simulator will continue during the summer of 2005, in another Doane
Undergraduate Research project.

8 Conclusion

This project provided us with many opportunities to learn through experience. We were
able to learn much about programming in Java and Java3D using the NetBeans
development environment. We were all introduced to a very important concept of group
programming called "common code ownership," and used the NetBeans CVS
(Concurrent Versions System) to keep our files up to date on a server. When using CVS,
we learned how to resolve conflicts in different versions of code, how to submit updates,
and how to manage our local development environment.

As for our graphical work, we were able to learn some new things about how computers
process 3D models. We learned about 3D model construction, using both CAD software
and hand-coding methods. We learned how to manipulate the look of a model by using a
simple text editor to modify the code that represents the model's vertices and colors.
When working with our models in Java3D, we learned how to orient objects in a virtual
world and create animation behaviors.

We learned how to model real-world behaviors in a computer simulation, and we also
learned about compiling and interpreting computer languages.

Over all, the experience of creating our simulator was very valuable. Participating in the
software design process has increased both our knowledge and respect for software
design, 3D modeling, compiler construction, and computer simulation.

 10

References

(1) Lego Mindstorms Website: http://mindstorms.lego.com/eng/products/ris/index.asp.

Link active as of 3/10/2005.

(2) Sun (Java) Website: http://java.sun.com/. Link active as of 3/10/2005.

(3) MLCad Website: http://www.lm-software.com/mlcad/. Link active as of 3/10/2005.

(4) Ldraw Website: http://www.ldraw.org. Link active as of 3/10/2005.

(5) LdrDat2 Website: http://wave.prohosting.com/xxcoder/ldrdat2.htm. Link active as of

3/10/2005.

(6) POV-Ray Website: http://www.povray.org. Link active as of 3/10/2005.

