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Abstract 
 
In a classic paper in theoretical computer science from the year 1962, Davis, Logemann, 
and Loveland [2] presented two methods for testing the consistency of logical formulas.  
The problem they described remains central to computer science, and their methods for 
solving it (subsequently dubbed DLL procedures in the research literature) are subject to 
recurring study and analysis to this day.  This paper describes a Java program with a 
graphical user interface that enables users to randomly generate logical expressions and 
to observe, step-by-step, the results of applying either of the original DLL methods to 
determine whether the expression contains a contradiction.  The DLL visualization 
program has value as a tool for both research and instruction.  Researchers can use it to 
gain a clear understanding of the standard methods for automated processing of Boolean 
expressions.  For computer science students, the program can be used in courses on 
algorithms, complexity, or artificial intelligence.  It can even be used in introductory 
courses on computing as a hands-on demonstration of one of the classic problems in 
computing – a seemingly efficient program for a simple problem can quickly become 
overwhelmed by a combinatorial explosion as the problem size increases.
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1 Introduction 
 
The satisfiability of Boolean expressions is one of the most thoroughly studied problems 
in the discipline of computer science.  Computing is, after all, just automated Boolean 
logic. A thorough understanding of Boolean logic is necessary to grasp the foundations of 
computing, and the ability to manipulate Boolean expressions efficiently is essential for 
practical computing.  Researchers have used computers for automated theorem-proving 
since the early days of the discipline, and the methods developed in those days remain at 
the core of the best-known algorithms for satisfiability testing.  This paper describes 
VisiDLL, a Java program with a graphical interface that illustrates the classical methods 
for satisfiability testing.  Researchers can use the program as a tool to become quickly 
grounded in theorem-proving methods that are both classical and current.  Educators can 
use the program to help students quickly grasp the complexity of one of the core 
problems in our discipline. 
 
A Boolean expression is a formula containing Boolean variables and the logical operators 
and (∧), or (∨), and not (¬).  A Boolean expression is satisfiable if and only if its value is 
true for some assignment of values to its variables.  An expression that is unsatisfiable 
contains a contradiction, and it is possible to relate satisfiability-testing to theorem-
proving as follows: a theorem, stated as a Boolean expression, is valid if and only if its 
negation is unsatisfiable.  In one of the earliest papers on theorem-proving procedures, 
Davis and Putnam [3] describe a method for demonstrating the unsatisfiability of an 
expression.  Their method later came to be known as resolution-refutation.  A few years 
later, Davis, Logemann, and Loveland [2] published a follow-up article that proposed a 
space-saving alternative to the resolution process called the splitting rule.  While these 
two methods are based on the same underlying logical operations, their appearance at 
run-time is quite distinct.  They were originally developed and run on an IBM 704, and 
the scope of the testing was understandably very limited.  It was apparent that the running 
time could grow exponentially with the size of the expression being tested, and a decade 
or so later, Cook [1] established satisfiability as the defining problem for a class called 
NP-complete. 
 
The VisiDLL program provides a graphical interface for generating random Boolean 
expressions and testing them for satisfiability using either of the methods described by 
Davis, Logemann, and Loveland (DLL methods).  For each method, some heuristics are 
employed to speed up the expression processing and to give the user a feel for the 
challenges and experiments that drive continuing satisfiability research.  The splitting 
method is commonly called backtracking, and VisiDLL employs an enhanced version of 
the previously published 3-SAT Backtracker [4] to illustrate this method.  The interface 
and implementation for the resolution method are new.  Both methods are described in 
more detail in the sections that follow. 
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2 The Resolution Method 
 
Davis, Logemann, and Loveland described their “Rule for Eliminating Atomic Formulas” 
very concisely, as shown in Figure 1.  A lengthier description of the method is given in 
the paragraphs that follow.  The term “resolution” was apparently introduced by J. A. 
Robinson [5] in a description of this method that was published a few years later.   
 
 

 
Figure 1:  Rule III from Davis, Logemann, and Loveland [2]. 

 
DLL algorithms operate on Boolean expressions in conjunctive normal form (CNF).  A 
CNF expression is a conjunction of clauses where each clause is a disjunction of literals, 
and each literal is a variable or a negated variable.  When each clause is restricted to 
contain no more than k literals, the expression is said to be k-CNF.  The following 
expression, for example, is a 3-CNF expression over the variable set V = (w, x, y, z): 
 

(w ∨ x ∨ ¬y) ∧ (¬w ∨ x ∨ y) ∧ (w ∨ x ∨ z) ∧ (¬x ∨ ¬y ∨ z). 

The set of clauses in an expression is a set of constraints.  In a resolution-based 
satisfiability test, this set is expanded by performing the resolution operation on pairs of 
clauses to add additional constraints with the goal of deriving a contradiction.  The 
resolution operation is defined as follows:  given two clauses c1 = x ∨ c1’ and c2 = ¬x ∨ 
c2’ where x is a variable, the resolvent clause c1’∨ c2’ is added to the set of clauses.  The 
addition of the resolvent will not affect the satisfiability of the clause set.  If the variable x 
is assigned true, then clause c1 is satisfied and clause c2 is not.  The clause c2 will have to 
be satisfied by an assignment to one of the variables in c2’.  If x is assigned false, on the 
other hand, then clause c2 is satisfied and c1 will have to be satisfied by an assignment to 
one of the variables in c1’.  So it is clear that the resolvent clause c1’∨ c2’ does not add 
any new constrains, since it will be satisfied if both c1 and c2 are satisfied. 
 
At first glance, it appears that resolution process will continually add more and longer 
clauses to the clause set.  But there are cases in which the resolvent is shorter than the 
two clauses being resolved.  Suppose, for example, that c1 = x ∨ c’ and c2 = ¬x ∨ c’.  In 
this case, the two clauses are the same except that one contains x and the other contains 
¬x, and the resolvent c’∨ c’ = c’ is shorter than the clauses it resolves.  Now consider 
what happens if we resolve c1 = x and c2 = ¬x.  The resolvent is the empty clause, which 
signals that a contradiction has been discovered.  So if an expression is unsatisfiable, the 
resolution process will eventually terminate when it generates an empty clause.  We can 
also apply other operations on clauses to minimize the size of the clause set.  Whenever 
one clause contains all the literals of another clause, the longer clause can be deleted.  

Let the given formula F be put into the form 
 

(A ∨ p) & (B ∨ ¬p) & R 
 

where A, B, and R are free of  p.  Then F is inconsistent if and only if (A ∨ B) & R 
is inconsistent. 
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That is, if the clause set contains clauses c1 and c2 = c1 ∨ c2’, then c2 can be deleted 
because any assignment that satisfies c1 and c2 also satisfies just c1.  As a special case 
when c2’ is empty, this rule also suppresses multiple copies of the same clause. 
 
If an expression is satisfiable, the resolution process will continue until no new clauses 
can be created by resolving pairs already in the set.  To make the process more 
systematic, the order of resolution operations can be controlled in a way that allows 
variables (and the all clauses that mention them) to be eliminated one by one.  We pursue 
this strategy by selecting a variable x and gathering together all the clauses that mention 
it.  After resolving all pairs where one clause contains literal x and the other contains ¬x, 
the clauses containing x can be removed.  The resulting clause set with one less variable 
is satisfiable if and only if the original clause set is satisfiable.  This process must 
obviously come to a stop.  With only one variable left, either an empty clause is 
generated (indicating a contradiction) or no new clause is generated (indicating all 
clauses have been satisfied). 
 
 
3 The Splitting Method 

The resolution algorithm of Davis, Logemann, and Loveland was running out of memory 
on an IBM 704, so they proposed the splitting rule as a space-saving alternative.  Instead 
of adding resolvents to a single growing set of clauses, the expression is split into two 
smaller versions and the two versions are both tested for satisfiability (if necessary).  To 
test an expression F, the algorithm selects a variable x and assigns it to true.  The 
expression F is simplified to get F’ by removing all clauses that contain the literal x and 
by removing the literal ¬x from any remaining clauses that contain it.  The expression F’ 
is then tested by recursive invocation of the splitting rule.  If F’ is found to be satisfiable, 
the algorithm terminates.  Otherwise, x is assigned to false and F is simplified to get 
another F’, this time by removing the clauses containing ¬x and shortening the clauses 
that contain x.  The satisfiability of F is determined by the satisfiability of the second F’. 
 

 
Figure 2:  Splitting Rule III* from Davis, Logemann, and Loveland [2]. 

 
The splitting algorithm is an example of backtracking search of a solution space.  It can 
be very space-efficient if a single copy of the expression is modified for each forward 
step and restored with each backward step in the process.  So backtracking can 
successfully suppress an exponential space requirement.  Its worst-case time requirement, 

Let the given formula F be put in the form 
 

(A ∨ p) & (B ∨ ¬p) & R 
 

where A, B, and R are free of  p.  Then F is inconsistent if and only if A & R and B 
& R are both inconsistent. 



4 

however, is still exponential.  If both possible truth values are tested for each of n 
variables, the algorithm requires 2n steps. 
 
4 The Interface for Resolution 

The VisiDLL program has three major components:  the expression generator, the 
resolution component, and the backtracking component.  It contains a class to encapsulate 
CNF Boolean expressions.  The expression generator requests from the user the number 
of literals per clause k, the number of variables n, and the number of clauses m.  It then 
randomly generates a CNF expression object with n variables, m clauses, and exactly k 
literals per clause.  Within a clause, there are no repeated variables.  The expression, 
however, may contain repeated clauses.  The names of the variables are just the natural 
numbers 1, 2, ..., n. 
 

 
Figure 3:  The resolution interface. 

 
The resolution component contains a version of the resolution algorithm and a user 
interface for conducting resolution refutation under user control (see Figure 3).  The 
resolution interface panel contains a list box that displays all the clauses currently in the 
clause set.  Initially, this box contains just the clauses of the original expression.  A 
second list box labeled the “Merge List” lies to the right of the clause box.  This box is a 
list of resolvents created by a resolution operation.  There is a text box between the two 
list boxes in which the user types the next variable to be used for resolution.  The right 
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Clauses Merge List 

Process All  Reset 

Expression size Mergelist size 
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Expressions      Algorithm      Help 
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arrow button is used to initiate the operation.  It causes all the resolvents of clauses that 
mention the resolution variable x to be added to the merge list, and then all clauses that 
mention x are removed from the clause list.  The user completes the resolution operation 
by pressing the left arrow button, which causes the merge list to be merged into the 
clause list.  The panel contains text boxes that display the number of clauses in the clause 
list and the merge list, as well as boxes that display the maximum number of clauses and 
maximum width of any clause during the processing of the entire expression.  The 
maximum size of the clause list is a metric for the complexity of the algorithm.  The 
panel also contains a “Process All” button that automatically runs the resolution process 
to completion and a “Reset” button that restores the expression to its initial state. 
 
The rightmost region of the resolution panel contains a table of statistics to guide the user 
in selecting the next variable to be resolved.  For each variable in the expression, the table 
displays the number of positive occurrences, the number of negative occurrences, the 
product of the positive and negative occurrences, and the total number of occurrences.  
The product column is provided as a measure of the balance between positive and 
negative occurrences.  The default heuristic for selecting the next variable is to choose 
the one with the smallest value in the product field.  The variable with the smallest 
product should produce the shortest list of resolvents.  With resolution, the best strategy 
seems to be keeping the clause list as short as possible throughout the process. 
 
 
5 The Interface for Splitting 
 
The backtracking component is an enhanced version of the previously published 3-SAT 
Backtracker [4].  It contains an implementation of the splitting algorithm and an 
interface that allows the user to control the order in which variables are selected and 
assigned. 
 
The interface contains a main menu and five panels:  the variable panel, the expression 
panel, the statistics panel, the control panel, and the tree panel.  The main menu contains 
items for creating expressions and setting the control mode.  The variable panel contains 
lists of free (unassigned), true, and false variables.  The expression panel contains the 
clauses of the expression partitioned into lists of 3-literal clauses, 2-literal clauses, 1-
literal clauses, and satisfied clauses.  The lists are dynamically updated as the user makes 
assignments to the variables.  The statistics panel contains a table that shows the number 
of occurrences of each literal in 3-literal and 2-literal clauses.  This information helps the 
user decide what the next assignment should be.  The control panel contains the control 
buttons appropriate to the control mode and two counts: the total number of assignments 
and the number of branching nodes in the backtracking tree.  The tree panel, not included 
in the earlier 3-SAT Backtracker, contains a graphical display of the assignments made 
so far in the form of a backtracking tree.  Figure 4 shows the layout of the interface in the 
interactive control mode. 
 
When using the backtracking algorithm, the user is challenged to determine satisfiability 
by making as few assignments as possible.  The default heuristic for automated 



6 

assignment selection is to choose the variable that occurs most frequently and assign it 
the true/false value that matches its most frequent polarity. 
 

 
Figure 4:  The splitting interface. 

 
6 Conclusion 
 
The VisiDLL program provides a conceptualization tool for two standard algorithms for 
a classical problem in computing.  While the two algorithms are closely related, their 
behavior and appearance at run-time is strikingly different.  The resolution method 
represents a breadth-first expansion of a set of constraints, while the backtracking method 
is a depth-first search of the set of possible solutions.  In both cases, the order in which 
the variables are processed has a huge impact on the running-time, and the standard 
heuristics are opposite.  With resolution, it is generally best to choose the variable that 
occurs least frequently.  With backtracking, on the other hand, it is best to choose the 
variable that occurs most frequently. 
 
VisiDLL was developed with two purposes in mind.  First, a good conceptualization tool 
is essential for research.  Any progress in satisfiability research must be founded on a 
thorough understanding of the standard methods that have been so thoroughly studied 
over the years.  Second, a concrete graphical implementation is the most effective way to 
present abstract material to students.  The satisfiability problem remains one of the core 
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problems in the discipline of computer science, and it is a standard topic in current 
undergraduate texts on algorithms or complexity.  VisiDLL is an excellent enhancement 
to classroom instruction.  It provides a way for students to follow the foot-steps of our 
discipline’s first generation of scientists in a journey that began nearly fifty years ago. 
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