

Classics Illustrated:

A Visualization Tool for Theorem-Proving Procedures

Thomas E. O’Neil
Computer Science Department

University of North Dakota
oneil@cs.und.edu

Abstract

In a classic paper in theoretical computer science from the year 1962, Davis, Logemann,
and Loveland [2] presented two methods for testing the consistency of logical formulas.
The problem they described remains central to computer science, and their methods for
solving it (subsequently dubbed DLL procedures in the research literature) are subject to
recurring study and analysis to this day. This paper describes a Java program with a
graphical user interface that enables users to randomly generate logical expressions and
to observe, step-by-step, the results of applying either of the original DLL methods to
determine whether the expression contains a contradiction. The DLL visualization
program has value as a tool for both research and instruction. Researchers can use it to
gain a clear understanding of the standard methods for automated processing of Boolean
expressions. For computer science students, the program can be used in courses on
algorithms, complexity, or artificial intelligence. It can even be used in introductory
courses on computing as a hands-on demonstration of one of the classic problems in
computing – a seemingly efficient program for a simple problem can quickly become
overwhelmed by a combinatorial explosion as the problem size increases.

1

1 Introduction

The satisfiability of Boolean expressions is one of the most thoroughly studied problems
in the discipline of computer science. Computing is, after all, just automated Boolean
logic. A thorough understanding of Boolean logic is necessary to grasp the foundations of
computing, and the ability to manipulate Boolean expressions efficiently is essential for
practical computing. Researchers have used computers for automated theorem-proving
since the early days of the discipline, and the methods developed in those days remain at
the core of the best-known algorithms for satisfiability testing. This paper describes
VisiDLL, a Java program with a graphical interface that illustrates the classical methods
for satisfiability testing. Researchers can use the program as a tool to become quickly
grounded in theorem-proving methods that are both classical and current. Educators can
use the program to help students quickly grasp the complexity of one of the core
problems in our discipline.

A Boolean expression is a formula containing Boolean variables and the logical operators
and (∧), or (∨), and not (¬). A Boolean expression is satisfiable if and only if its value is
true for some assignment of values to its variables. An expression that is unsatisfiable
contains a contradiction, and it is possible to relate satisfiability-testing to theorem-
proving as follows: a theorem, stated as a Boolean expression, is valid if and only if its
negation is unsatisfiable. In one of the earliest papers on theorem-proving procedures,
Davis and Putnam [3] describe a method for demonstrating the unsatisfiability of an
expression. Their method later came to be known as resolution-refutation. A few years
later, Davis, Logemann, and Loveland [2] published a follow-up article that proposed a
space-saving alternative to the resolution process called the splitting rule. While these
two methods are based on the same underlying logical operations, their appearance at
run-time is quite distinct. They were originally developed and run on an IBM 704, and
the scope of the testing was understandably very limited. It was apparent that the running
time could grow exponentially with the size of the expression being tested, and a decade
or so later, Cook [1] established satisfiability as the defining problem for a class called
NP-complete.

The VisiDLL program provides a graphical interface for generating random Boolean
expressions and testing them for satisfiability using either of the methods described by
Davis, Logemann, and Loveland (DLL methods). For each method, some heuristics are
employed to speed up the expression processing and to give the user a feel for the
challenges and experiments that drive continuing satisfiability research. The splitting
method is commonly called backtracking, and VisiDLL employs an enhanced version of
the previously published 3-SAT Backtracker [4] to illustrate this method. The interface
and implementation for the resolution method are new. Both methods are described in
more detail in the sections that follow.

2

2 The Resolution Method

Davis, Logemann, and Loveland described their “Rule for Eliminating Atomic Formulas”
very concisely, as shown in Figure 1. A lengthier description of the method is given in
the paragraphs that follow. The term “resolution” was apparently introduced by J. A.
Robinson [5] in a description of this method that was published a few years later.

Figure 1: Rule III from Davis, Logemann, and Loveland [2].

DLL algorithms operate on Boolean expressions in conjunctive normal form (CNF). A
CNF expression is a conjunction of clauses where each clause is a disjunction of literals,
and each literal is a variable or a negated variable. When each clause is restricted to
contain no more than k literals, the expression is said to be k-CNF. The following
expression, for example, is a 3-CNF expression over the variable set V = (w, x, y, z):

(w ∨ x ∨ ¬y) ∧ (¬w ∨ x ∨ y) ∧ (w ∨ x ∨ z) ∧ (¬x ∨ ¬y ∨ z).

The set of clauses in an expression is a set of constraints. In a resolution-based
satisfiability test, this set is expanded by performing the resolution operation on pairs of
clauses to add additional constraints with the goal of deriving a contradiction. The
resolution operation is defined as follows: given two clauses c1 = x ∨ c1’ and c2 = ¬x ∨
c2’ where x is a variable, the resolvent clause c1’∨ c2’ is added to the set of clauses. The
addition of the resolvent will not affect the satisfiability of the clause set. If the variable x
is assigned true, then clause c1 is satisfied and clause c2 is not. The clause c2 will have to
be satisfied by an assignment to one of the variables in c2’. If x is assigned false, on the
other hand, then clause c2 is satisfied and c1 will have to be satisfied by an assignment to
one of the variables in c1’. So it is clear that the resolvent clause c1’∨ c2’ does not add
any new constrains, since it will be satisfied if both c1 and c2 are satisfied.

At first glance, it appears that resolution process will continually add more and longer
clauses to the clause set. But there are cases in which the resolvent is shorter than the
two clauses being resolved. Suppose, for example, that c1 = x ∨ c’ and c2 = ¬x ∨ c’. In
this case, the two clauses are the same except that one contains x and the other contains
¬x, and the resolvent c’∨ c’ = c’ is shorter than the clauses it resolves. Now consider
what happens if we resolve c1 = x and c2 = ¬x. The resolvent is the empty clause, which
signals that a contradiction has been discovered. So if an expression is unsatisfiable, the
resolution process will eventually terminate when it generates an empty clause. We can
also apply other operations on clauses to minimize the size of the clause set. Whenever
one clause contains all the literals of another clause, the longer clause can be deleted.

Let the given formula F be put into the form

(A ∨ p) & (B ∨ ¬p) & R

where A, B, and R are free of p. Then F is inconsistent if and only if (A ∨ B) & R
is inconsistent.

3

That is, if the clause set contains clauses c1 and c2 = c1 ∨ c2’, then c2 can be deleted
because any assignment that satisfies c1 and c2 also satisfies just c1. As a special case
when c2’ is empty, this rule also suppresses multiple copies of the same clause.

If an expression is satisfiable, the resolution process will continue until no new clauses
can be created by resolving pairs already in the set. To make the process more
systematic, the order of resolution operations can be controlled in a way that allows
variables (and the all clauses that mention them) to be eliminated one by one. We pursue
this strategy by selecting a variable x and gathering together all the clauses that mention
it. After resolving all pairs where one clause contains literal x and the other contains ¬x,
the clauses containing x can be removed. The resulting clause set with one less variable
is satisfiable if and only if the original clause set is satisfiable. This process must
obviously come to a stop. With only one variable left, either an empty clause is
generated (indicating a contradiction) or no new clause is generated (indicating all
clauses have been satisfied).

3 The Splitting Method

The resolution algorithm of Davis, Logemann, and Loveland was running out of memory
on an IBM 704, so they proposed the splitting rule as a space-saving alternative. Instead
of adding resolvents to a single growing set of clauses, the expression is split into two
smaller versions and the two versions are both tested for satisfiability (if necessary). To
test an expression F, the algorithm selects a variable x and assigns it to true. The
expression F is simplified to get F’ by removing all clauses that contain the literal x and
by removing the literal ¬x from any remaining clauses that contain it. The expression F’
is then tested by recursive invocation of the splitting rule. If F’ is found to be satisfiable,
the algorithm terminates. Otherwise, x is assigned to false and F is simplified to get
another F’, this time by removing the clauses containing ¬x and shortening the clauses
that contain x. The satisfiability of F is determined by the satisfiability of the second F’.

Figure 2: Splitting Rule III* from Davis, Logemann, and Loveland [2].

The splitting algorithm is an example of backtracking search of a solution space. It can
be very space-efficient if a single copy of the expression is modified for each forward
step and restored with each backward step in the process. So backtracking can
successfully suppress an exponential space requirement. Its worst-case time requirement,

Let the given formula F be put in the form

(A ∨ p) & (B ∨ ¬p) & R

where A, B, and R are free of p. Then F is inconsistent if and only if A & R and B
& R are both inconsistent.

4

however, is still exponential. If both possible truth values are tested for each of n
variables, the algorithm requires 2n steps.

4 The Interface for Resolution

The VisiDLL program has three major components: the expression generator, the
resolution component, and the backtracking component. It contains a class to encapsulate
CNF Boolean expressions. The expression generator requests from the user the number
of literals per clause k, the number of variables n, and the number of clauses m. It then
randomly generates a CNF expression object with n variables, m clauses, and exactly k
literals per clause. Within a clause, there are no repeated variables. The expression,
however, may contain repeated clauses. The names of the variables are just the natural
numbers 1, 2, ..., n.

Figure 3: The resolution interface.

The resolution component contains a version of the resolution algorithm and a user
interface for conducting resolution refutation under user control (see Figure 3). The
resolution interface panel contains a list box that displays all the clauses currently in the
clause set. Initially, this box contains just the clauses of the original expression. A
second list box labeled the “Merge List” lies to the right of the clause box. This box is a
list of resolvents created by a resolution operation. There is a text box between the two
list boxes in which the user types the next variable to be used for resolution. The right

Variable Occurrences

 �

 �

Clauses Merge List

Process All Reset

Expression size Mergelist size

Max Length Max Width

Expressions Algorithm Help

 Var + - Product Total

5

arrow button is used to initiate the operation. It causes all the resolvents of clauses that
mention the resolution variable x to be added to the merge list, and then all clauses that
mention x are removed from the clause list. The user completes the resolution operation
by pressing the left arrow button, which causes the merge list to be merged into the
clause list. The panel contains text boxes that display the number of clauses in the clause
list and the merge list, as well as boxes that display the maximum number of clauses and
maximum width of any clause during the processing of the entire expression. The
maximum size of the clause list is a metric for the complexity of the algorithm. The
panel also contains a “Process All” button that automatically runs the resolution process
to completion and a “Reset” button that restores the expression to its initial state.

The rightmost region of the resolution panel contains a table of statistics to guide the user
in selecting the next variable to be resolved. For each variable in the expression, the table
displays the number of positive occurrences, the number of negative occurrences, the
product of the positive and negative occurrences, and the total number of occurrences.
The product column is provided as a measure of the balance between positive and
negative occurrences. The default heuristic for selecting the next variable is to choose
the one with the smallest value in the product field. The variable with the smallest
product should produce the shortest list of resolvents. With resolution, the best strategy
seems to be keeping the clause list as short as possible throughout the process.

5 The Interface for Splitting

The backtracking component is an enhanced version of the previously published 3-SAT
Backtracker [4]. It contains an implementation of the splitting algorithm and an
interface that allows the user to control the order in which variables are selected and
assigned.

The interface contains a main menu and five panels: the variable panel, the expression
panel, the statistics panel, the control panel, and the tree panel. The main menu contains
items for creating expressions and setting the control mode. The variable panel contains
lists of free (unassigned), true, and false variables. The expression panel contains the
clauses of the expression partitioned into lists of 3-literal clauses, 2-literal clauses, 1-
literal clauses, and satisfied clauses. The lists are dynamically updated as the user makes
assignments to the variables. The statistics panel contains a table that shows the number
of occurrences of each literal in 3-literal and 2-literal clauses. This information helps the
user decide what the next assignment should be. The control panel contains the control
buttons appropriate to the control mode and two counts: the total number of assignments
and the number of branching nodes in the backtracking tree. The tree panel, not included
in the earlier 3-SAT Backtracker, contains a graphical display of the assignments made
so far in the form of a backtracking tree. Figure 4 shows the layout of the interface in the
interactive control mode.

When using the backtracking algorithm, the user is challenged to determine satisfiability
by making as few assignments as possible. The default heuristic for automated

6

assignment selection is to choose the variable that occurs most frequently and assign it
the true/false value that matches its most frequent polarity.

Figure 4: The splitting interface.

6 Conclusion

The VisiDLL program provides a conceptualization tool for two standard algorithms for
a classical problem in computing. While the two algorithms are closely related, their
behavior and appearance at run-time is strikingly different. The resolution method
represents a breadth-first expansion of a set of constraints, while the backtracking method
is a depth-first search of the set of possible solutions. In both cases, the order in which
the variables are processed has a huge impact on the running-time, and the standard
heuristics are opposite. With resolution, it is generally best to choose the variable that
occurs least frequently. With backtracking, on the other hand, it is best to choose the
variable that occurs most frequently.

VisiDLL was developed with two purposes in mind. First, a good conceptualization tool
is essential for research. Any progress in satisfiability research must be founded on a
thorough understanding of the standard methods that have been so thoroughly studied
over the years. Second, a concrete graphical implementation is the most effective way to
present abstract material to students. The satisfiability problem remains one of the core

Assignments
 Branches Set to True Reset

Expressions Algorithm Control Heuristics Help

Var 3+ 3- 2+ 2- 3Tot 2Tot Expression Clauses

Counts

Clauses Assignment tree

3-literal 2-literal 1-literal Satisfied

Variables

Variable Counts

Free True False

Set to False

Variable Occurrences

7

problems in the discipline of computer science, and it is a standard topic in current
undergraduate texts on algorithms or complexity. VisiDLL is an excellent enhancement
to classroom instruction. It provides a way for students to follow the foot-steps of our
discipline’s first generation of scientists in a journey that began nearly fifty years ago.

References

[1] Cook, S. (1971). The complexity of theorem-proving procedures. Proceedings of

the Third ACM Symposium on Theory of Computing, 151-158. ACM, New York.

[2] Davis, M., G. Logemann, and D. Loveland (1962). A Machine Program for

Theorem-Proving. Communications of the Association for Computing Machinery
5:394-397.

[3] Davis, M., and H. Putnam. (1960). A computing procedure for quantification theory.

Journal of the Association for Computing Machinery 7:201-215.

[4] O’Neil, T. E. (2001). A Graphical 3-SAT Program for Research and Instruction.

Proceedings of the 34th Annual Midwest Instruction and Computing Symposium
(MICS ’01), Cedar Falls, IA.

[5] Robinson, J. A. (1965). A Machine-Oriented Logic Based on the Resolution

Principle. Journal of the Association for Computing Machinery 12(1):23-41.

