
A Service Migration Case Study:
Migrating the Condor Schedd

Joe Meehean and Miron Livny
Computer Sciences Department

University of Wisconsin-Madison
Madison, WI 53706

{jmeehean|miron}@cs.wisc.edu

March 11, 2005

Abstract

Service migration has become an important topic due the rising interest in both service-
based architectures and mobile computing. We have identified two core problems asso-
ciated with migrating a service: packaging the service binaries and data in a fashion that
allows it to be restarted at a remote site and locating a service after it has migrated. Many
implementations of service migration assume homogeneous host architectures as well as
uniform file access. Additionally, some implementations require that migration occur in
kernel-space. We require that a service capture its own state using configuration files and
operation logs. This state is then marshalled to be machine architecture independent as well
as independent of any file system or mount point. We call this techniqueservice-defined
logical checkpointing, it occurs entirely in user-space and significantly eases the migration
of a service. We mobilized the Condor High Throughput System’s distributed scheduling
service (schedd) to illustrate the use of service-defined logical checkpointing to migrate a
service. Further, we created a specialized Condor command and associated Condor job that
can be used to migrate a schedd to a specific host or to a host matching an arbitrary set of
requirements, including CPU load.

1 Introduction

Services and service-based architectures are becoming an increasingly popular way to im-
plement distributed systems. Web developers are creating applications using the distributed
web service approach offered by J2EE [4] and .Net [6] solutions. The Open Grid Services
Architecture details an extension of web services for the grid, in which grid functionality is
provided by a series of transient and stateful grid services[14]. Several operating systems
are implemented using a local service based architecture, including Kea [30] and ExoKer-
nel [13]. In addition, the recent popularity of P2P content distribution networks, such as
Kazaa [5], has caused many users to install peer-based services on their desktop machines.

This new reliance on services has created a need for a more robust brand of service; ser-
vices must be mobilized. Server-side service mobility may be used as a load balancing
technique. Generally a service is bound to a particular server or cluster of servers. In-
creased demand for a given service may cause a poor performance on specific server while
within the same server room other machines remain relatively idle. Additionally, it is occa-
sionally necessary to take a server offline for maintenance.Service mobility would allow
a given service to migrate to another machine while maintenance occurs and migrate back
when maintenance is finished. Client-side service mobilityallows more freedom for an in-
creasingly mobile computing population. A user may wish to migrate a service from their
desktop to a laptop for roaming, or to migrate a service from aremote desktop to a local
desktop. Or more dynamically a user may wish to run a service,but does not want the
service to interfere with interactive tasks the user is running. A service could be migrated
from active desktops to inactive desktops throughout the course of the day.

We have identified problems associated with migrating a service and have applied a series
of techniques to solve them in user-space without a uniform view of the file system. Fur-
ther, we have mobilized the distributed scheduling serviceof the Condor High Throughput
Computing System to test the effectiveness of our approach.

In the remainder of this paper, we refer to the machine a service is migrating from as
the sourcemachine and the machine a service is migrating to as thetarget machine. In
Section 2, we discuss our basic designs goals. Section 3 provides an overview of our
service migration techniques. We provide a brief overview of the Condor High Throughput
Computing System in Section 4. In Section 5, we delve into theimplementation details
of mobilizing the distributed scheduler. Section 6 provides performance metrics of the
mobilized service. We briefly discuss related work in Section 7 and lay out our future work
and conclusions in Section 8.

2 Design Goals

At the outset of this project we set forth a series of design goals, restrictions, and assump-
tions for completing service migration. Many of these goalsare influenced by the Condor
High Throughput Computing System [29] because in the Condorsystem homogeneity can
rarely be assumed. Our basic design goals are as follows.

1

• A service should behave in the same manner after migrating.

• A mobile service does not require a specialized compiler.

• Migrating a service will occur entirely in user-space.

• A service wishing to be mobilized may be modified to ease capturing its state.

• A migrated service will have no residual dependencies on thesource site. This means
that there will be no need for contact between the migrated service and its previous
host after migration.

• A migrated service cannot assume uniform access to a distributed file system.

• The data migrated with a service cannot assume the same operating system or archi-
tecture.

• It is acceptable for the service to be temporarily unavailable during migration.

Several of these goals may seem arbitrary or conflicting so weattempt to justify our de-
sign choices. We anticipated that modifying a service is easier than modifying all of the
operating systems the service may wish to migrate to. Further, performing migration in
kernel-space may make a migration framework fragile and susceptible to breakdowns be-
tween versions of the same kernel let alone other operating systems [12]. Additionally,
we felt that attempting to capture the state of a service using a specialized compiler would
limit our ability to migrate services written in non type-safe languages such as C/C++ [26].
While distributed file systems are popular we felt it would benaive to assume that a mi-
grating service would have homogeneous access to its home file system at every host. A
service’s home file system may be unavailable or mounted differently at the target site. The
theme of our goals is heterogeneity and with that in mind we deemed that a service’s data
should be migrated in an operating system and host architecture independent manner. A
service may be ported to several different operating systems and architectures. Therefore,
when migrating a service we cannot assume that the service’sdata will be interpreted the
same way on the target site. Finally, we allow the user to notice a brief interruption in a
migrating service. Adding service redirection at both the network and application layers
may allow us avoid this interruption but would violate our design goal of having no residual
dependencies.

3 Architecture

We have identified two core problems associated with migrating a service: physically mov-
ing the service binaries and data in a manner which allows forexecution at a remote site
(Section 3.1) and locating the service once it has migrated (Section 3.2).

2

3.1 Service-Defined Logical Checkpointing

Physical process checkpointing would allow us to suspend and resume a service, but vi-
olates many of our basic design goals. Some implementationsof physical checkpointing
require that the checkpointing occur in kernel-space [12, 10, 20], while others require re-
mote kernel calls, which violates our goal of removing residual dependencies [16]. Virtual
machine solutions checkpoint a guest operating system’s file system as well as its pro-
cesses, but require that a service always run in a virtual machine [15]. This requires either
significant slowdown or the assumption that a service will never be migrated to a machine
with a different architecture. The Tui System [26] providesa mechanism to translate a pro-
cess’s data into an architecture independent intermediateform, but requires a specialized
compiler and works only for type-safe programs.

Since our design goals allow changes to a service we have decided that a service should
be able to contribute to checkpointing. We define our checkpointing techniques asservice-
defined logical checkpointing. Essentially, the service captures its own state in a service-
dependent manner. This state must be translated into an intermediate form breaking all
dependencies on uniform file access, kernel version, and architecture. Finally, this mar-
shalled state must be packaged along with any files needed by the service into a single
checkpoint file.

3.1.1 Mobile Service State Capture

A service’s state is divided into static state and dynamic state. The static state of service
are values which are not likely to change over the run time of the service. Static state could
include values like the service’s name, logging level, and the location of helper programs.
In contrast, a service’s dynamic state are values which change frequently, as frequently as
several times a second. Dynamic state could include values like the number of requests cur-
rently being serviced, a list of open files, and the state of current requests. Static state can
be thought of as read-only while dynamic state can be read andwritten. Due to their differ-
ent nature, it makes sense to capture these states differently. Static state can be effectively
captured even before a service begins executing, while dynamic state must be captured in
real-time.

Static service state can be captured in configuration or properties files. Configuration files
allow users to customize applications or libraries for their specific needs, and for this reason
many applications and code libraries already use configuration files. These files range in
size and complexity from the dozens of logically linked filesneeded by Apache Struts [1]
to the relatively simple configuration file for Emacs [2].

Dynamic service state can be captured using logging or journaling. Logging is the act of
writing events in the order they occur to non-volatile storage. Typically logging is done
along-side actual processing and stored in a separate file toprovide debugging information
and failure recovery. Write-ahead logging is used by databases to provide transactional
logic and failure recovery [23]. The Log-Structured file system (LFS) differs from database
transaction logging in that the actual file system data is stored in a log format [25]. Using

3

both LFS and database logs as a model, a service can export changes to its dynamic state
as updates to an operations log file. After migration, a service need only replay its log to
reconstruct its dynamic state.

3.1.2 Marshalling Service State

Once a service’s state is captured it must be migrated with the service. For performance and
efficiency a service’s state may contain assumptions about the environment it is executing
in. These assumptions include things like the location of libraries, the architecture of the
host machine, the mount point of a distributed file system, and the location of service-
specific files and directories. These assumptions must be removed from a service’s state
to produce a host-independent checkpoint. Therefore, a service’s state must be marshalled
prior to checkpointing. The details of marshalling are service dependent, however, the basic
principles are the same.

Base data types, integers, floating-point numbers, and raw bytes, must be modified into a
machine agnostic representation. Flat data types, a seriesof base data types maintained in a
structure or array, must be modified in such a way that the correct order can be determined at
the remote host. Complex data types are structures that may contain pointers or references
to other structures which must also be marshalled. There area wide variety of techniques
for marshalling base, flat, and complex data types [22]. Choosing the appropriate technique
is service dependent and relies heavily on how the service’sstate is captured.

If we do not assume uniform file access between migration points then file paths require
a specialized marshalling scheme. When discussing file paths we are referring to absolute
file paths and believe this simplification is legitimate since a relative file path can be easily
converted to an absolute file path. One might consider a file path a flat structure since it
is composed of an array of characters. However, in service migration a file path is more
closely related to a complex data type in that special care must be taken not to lose impor-
tant context. The path portion of a file name provides contextfor the file, if it is located
in a bin directory then the file is likely an executable binary. Further, some of this con-
text is only relevant at a particular host. For example the path /unsup/vdt/globus/
may be the location of the Globus program files at host A, but this path may be mean-
ingless on host B. Relations between files may be inferred by their paths names, but
without extremely intelligent software the overall context is lost. For example, the files
kbattleship andkasteroids may both reside in/s/kde/bin/ which implies a
relationship, but it would be difficult for a program interpreting this relationship to rec-
ognize that this path represents the binary executables forKDE version 3.2. To prevent
losing this context and to decouple a file’s path from its current machine we can replace
portions of a path name with a macro. The path/unsup/vdt/globus/ could be re-
placed with$GLOBUS/, or the path/s/kde/bin/kbattleship can be modified to
$KDE 3 2/bin/kbattleship. Many application already use a similar approach to lo-
cate needed libraries. For example, the Apache Jakarta Tomcat application server uses an
environment variable,JAVA HOME, to determine the location of the Java Runtime Envi-
ronment [8].

4

Demarshalling these path names requires that a host have theappropriate macros defined.
These macro definitions encapsulate important informationabout a host, such as the loca-
tion of code libraries and helper binaries. It would be very difficult to migrate a service to
a machine that the service knew absolutely nothing about. These macros can be considered
an addition to the minimal set of information needed to demarshall a service at an arbi-
trary host. Other items in this minimal set include operating system version and machine
architecture. Further, decoupling files from their absolute paths allows us to migrate these
files with a service when they are not already stored at the target site. The file migration
implementation can set the macros at the remote site to pointto the location of the newly
migrated files. Even if a file is stored in a distributed file system and reachable from a
target site, the distributed file system may only be accessible via a high latency connection
making file migration to a local file system a performance improvement.

3.2 Mobile Service Location

A common solution to general service location is to employ a naming service that maps a
persistently named service instance to a transient IP address and port number. DNS [19],
a classic example, maps dot-separated hierarchical names to IP addresses for email and
WWW. Another example is Sun’s Port Mapper [18] which maps a service name to the port
number on which the service is currently accepting requests.

Although naming services provide a solution to general service location, mobile services
introduce an added difficulty by potential changing their IPand port number frequently. A
naming service’s effectiveness in providing a location fora mobile service is limited by its
latency in updating its service mappings. In addition, clients of a mobile service must be
prepared to reconsult the naming service any time a connection fails.

4 Condor

We mobilized the distributed scheduling service of the Condor High Throughput System
to test using our techniques for actual service migration. Abasic knowledge of Condor is
necessary to understand our implementation of a mobilized scheduling agent. This section
provides a brief overview of Condor.

4.1 Condor Architecture

The Condor High Throughput Computing System is composed of acollection of machines
loosely coupled into a pool. The machines in a pool work together to collectively provide
high throughput processing, measuring work accomplished in hours not milliseconds. Each
pool must have at least one machine representing each of the following roles, see Figure 1.
A submitmachine accepts job submissions from users and must run theschedd, the Condor
distributed scheduling service. Anexecutemachine runs jobs submitted to Condor and
must be running thestartd, the Condor distributed computation service. A startd is the
representative of the machine’s owner, enforcing the owner’s policy regarding when jobs

5

Match
Maker

Central Manager

Schedd

Submit Machine

Shadow

Fork

Execute Machine

Startd

Starter

User Job

Fork

Fork

Matchmaking
Protocol

Binding
Protocol

Execution
Protocol

Figure 1: Machine Roles in a Condor Pool

may be run on the machine, who can run jobs on the machine, and which jobs to give
priority to. The third and final role in the Condor pool is the centralmatch maker. The
match maker matches jobs submitted to the schedds with machine resources represented
by the startds. A machine may serve many roles and there can bemany submit and execute
machines, but at the present there is only one match maker perpool [29].

Because a Condor pool may consist of machines with differentoperating systems and ar-
chitectures the match making language must be machine independent. Condor uses the
ClassAds [24] language, which was inspired by classified advertisements, for describing
both jobs and resources. ClassAds are composed of a series ofattribute-expression pairs,
e.g.,OpSys = LINUX. The schedd converts a job submission description into a jobclass
ad, stores it internally, then transmits it to the match maker for matching. On the execute
machine, the startd converts the machine specifications andthe owner’s policy into a ma-
chine class ad and also submits it the match maker. The match maker in turn attempts to
match job ads to machine ads. When the match maker finds a possible match it notifies each
party, indicating that a match has occurred. However, the final binding between job and ma-
chine is negotiated by the schedd and startd, if an agreementcan’t be reached a match is not
made. After binding has taken place the schedd forks a process called theshadowwhich
is responsible for staging the job to the remote execution site as well as providing remote
access to any files the job may require. On the execute machinethe startd forks a process
called thestarterwhich is responsible for setting up the execution environment, forking the
job, and monitoring the job’s execution.

4.2 Advantages of using the Schedd as an Example Implementation

The schedd is a good example for illustrating service migration using our techniques be-
cause it has several desirable features of a complex service. The schedd maintains several

6

csu

schedd_restart

csar jobQMD configMD

schedd_checkpoint

schedd_migrate

csi

Migrate

Install/Uninstall Marshall/Demarshal

Logical
Checkpoint

Figure 2: Migration Infrastructure

files related to a job’s execution. These files must be migrated with the schedd allowing us
to test our path marshalling. Additionally, the schedd forks other processes, meaning the
process binaries must be migrated and their remote paths determined. Further, the schedd
already captures its state using an operation log and a configuration file. Basic and flat
data types are already in a machine independent form becausethis log file is written in a
marked up version of ClassAds. The schedd already logging asa failure recovery mecha-
nism because it is designed to work in a dynamic environment where resources may crash
or be reclaimed. Additionally, due to the heterogeneity of resources within a Condor pool,
which can span several networks and administrative domains, the schedd is dynamically
configurable using both configuration files and environment variables. Also, a schedd pe-
riodically sends a portion of its state to the match maker, including its IP address and port
number. When a service or user wishes to locate a specific schedd it queries the match
maker. There is only one matchmaker per pool so their is no added latency involved in
updating replicas, which satisfies our requirement for a low-latency naming service.

5 Implementation

Naming is handled by the match maker, and state capture is handled by a combination of
the schedd’s operation log,jobQ, and schedd’s configuration file,condorconfig. Only state
translation and the migration infrastructure remained to be implemented, see Figure 2. State
translation is the required marshalling and demarshallingof the schedd’s captured data for
execution at the target site. While the migration infrastructure is the combination of many
components, including state translation, to logically checkpoint the schedd, move it to the
target site, and restart it.

5.1 Install/Uninstall

A core set of functionality required by logical checkpointing is packaging all the service’s
components into a single file, cleaning up the packaged components, and unpacking this
single file into a set of service components at the target site. This can be accomplished
using an archiver, an installer, and an uninstaller

7

5.1.1 Archiver

A schedd service is more than just a binary, it is composed of several parts including the
condorconfig, jobQ, individual job files, and debugging logs. For ease and efficiency
these files need to be packaged into a single file for compression and transmission. We
have implemented the Condor Schedd ARchiver,csar to collect the needed components,
package, and compress them into a single file. condorconfig details the locations of all of
the files needed by the schedd, including the location of supporting binaries. csar queries
the condorconfig to locate all of the needed files, copies them into a new directory, archives
the directory, and compresses the archive. Archiving and compression are implemented
using GNU’s tar [7] and gzip [3] programs.

5.1.2 Installer

Upon arriving at a target machine the schedd must be installed. We implemented the Con-
dor Schedd Installer,csi, to uncompress, unpack, and install a schedd from an archive. csi
either installs the components in the current working directory, or, if supplied with an in-
stallation configuration file, installs the components in user-defined locations. Additionally,
csi generates a log file detailing the location of all of the successfully installed components.

5.1.3 Uninstaller

A schedd may be migrated from one machine to the next. It wouldbe poor design to
assume that the schedd would eventually be migrated back to any machine it was migrated
from. Once a schedd leaves a machine it must leave no files behind. Imagine a scenario in
which several schedds made a brief stop at single machine; the machine’s disk space would
eventually fill with old schedd files. We implemented the Condor Schedd Uninstaller,csu,
to clean up and remove schedd components. csu locates the components to uninstall by
querying condorconfig or an uninstall configuration file. In the event that an installation
fails, csi can be used to clean up the partially installed schedd by supplying it with the log
file created by the failed installation.

5.2 Marshall/Demarshall

In order for a service to migrate, its state must be made independent of its host environment.
However, in order for the service to operate at the target host, its state must be attached to
the new host environment.

5.2.1 JobQ Marshalling

The schedd exports its dynamic state in the form of a log file called the jobQ. The jobQ is
a marked up version of ClassAds; the markings are used to indicate operation type: insert,
delete, and update. The jobQ is dependent on the host machineof the schedd, specifically
on the file system. Each file, including the binary, of each jobis listed in the jobQ. At
submission, a job’s files are copied into a special schedd directory. The jobQ is updated
to point to the special directory version of the files needed by a job. During migration

8

the jobQ must be modified to remove these absolute file paths and thereby remove the de-
pendency on the host file system. We refer to this modificationas marshalling the jobQ.
Every instance of an absolute file path that specifies a scheddcomponent is replaced by a
macro. For example the path to a mobile job’s initial workingdirectory may be represented
asIwd "/scratch/condor/spool/cluster5.proc0.subproc0". The pre-
fix /scratch/condor/spool specifies the spool component of the schedd and mar-
shalling should replace the prefix with$(SPOOL). The entry would then appear as
Iwd $(SPOOL)/cluster5.proc0.subproc0. After arrival at the target machine
the jobQ must be relinked to the file system so that the file paths point to an actual loca-
tion. We refer to this relinking as demarshalling the jobQ. Every macro indicating a schedd
component is replaced with the actual location of the component.

We implemented a program,jobqMD, to both marshall and demarshall a jobQ. The set of
possible Condor ClassAds attributes may expand or old attributes may take on new mean-
ing. To prevent this from requiring a rewrite of the jobQ marshaller a jobqMD configuration
file stores which attributes are candidates for marshalling/demarshalling. To perform the
marshalling and demarshalling correctly jobqMD requires amapping from schedd com-
ponent macros to their current location. This mapping can bedirectly computed from the
installation log file both at the source and the target sites.

5.2.2 Configuration Marshalling

A schedd’s static data is maintained in the condorconfig file. This file specifies locations of
schedd components, the name of the central manager, security settings and preferences, file
system domain, and other settings. A subset of the properties defined in the condorconfig
file are machine independent. For example, the central manager will be the same machine
regardless of where a schedd migrates within a pool. Similarly, the security settings should
not change simply because the schedd has migrated. However,some properties are tied
directly to the host machine. The schedd uses the propertiesdefined in condorconfig to
locate its helper binaries, e.g. the shadow.

In order to migrate the schedd we must remove these host machine dependencies. Mar-
shalling the condorconfig file is different from marshalling the jobQ, in that, marshalling
the jobQ introduced place holders for machine dependent attributes while marshalling con-
dor config simply removes any machine dependent properties. Demarshalling the con-
dor config reintroduces these machine dependent properties forthe new host.

We implemented a program,configMD, to marshall and demarshall the condorconfig. The
set of properties stored in condorconfig can change with each version of Condor, in that
new features are added that require configuration variablesand old features are removed. To
handle this flexibility configMD uses a configuration file thatdetails which properties are
machine dependent. Additionally, each machine dependent property must specify whether
it is a required or optional property. During demarshallingconfigMD must be provided
with a file mapping required machine dependent properties tomachine specific values. In
the case where configMD finds a required machine dependent property with no entry in

9

the map file during demarshalling, it produces an error and exits. If an optional machine
dependent property is not in the map file, configMD does not include it in the demarshalled
condorconfig. configMD allows a series of macros to be used in the map file including
macros representing the current machine’s IP address and DNS name.

5.3 Schedd Checkpoint and Restart

Using the components from the previous section a schedd can be checkpointed and restarted
on different hosts.

5.3.1 Schedd Checkpoint

A schedd must be shutdown prior to logical checkpointing, one cannot guarantee a correct
logical checkpoint of the state if the state is changing. ThejobQ is marshalled using the
current installation log as a schedd component map file. Thenthe condorconfig is mar-
shalled with configMD. The schedd is then archived by csar andthe schedd components
removed by csu. What remains is a single logically checkpointed schedd. These tasks are
completed by a program calledscheddcheckpoint.

5.3.2 Schedd Restart

To restart a schedd, it must be installed at the target site from an archive using csi. The
installation log is used as an input into jobqMD to demarshall the jobQ. The condorconfig
is demarshalled using configMD with either a predefined map file or a map file generated
from the installation log and local knowledge about the target host. Finally, the schedd
is restarted. The schedd reconfigures itself by reading the condorconfig, then replays the
jobQ to reconstruct its dynamic state, and, finally, registers its new location with the match
maker. These tasks are completed by a program calledscheddrestart.

5.4 Schedd Migration

Determining when to migrate is a service-dependent policy decision. We leave policy
decisions about when to migrate to the user. Determining where to migrate is also a
policy decision. If a user has a specific host in mind then theymerely need to execute
scheddcheckpoint on the source host, transfer the archive to the target host, and execute
scheddrestart. However, the user may wish to migrate the schedd to amore general set of
hosts with more complex requirements.

A user wishing to migrate the schedd only has to checkpoint the schedd, create a job sub-
mission file for the scheddrestart program with the checkpoint file as a parameter, and
submit the job to another schedd. The checkpointed schedd will be restarted on the next
available execute machine. Further, a user can include withthe job submission a complex
set of target machine requirements and preferences, detailing everything from average CPU
load to a specific subset of target machines. Many of these steps are repetitive for every
migration of a schedd. To ease the use of this type of migration we created a program,

10

100KB 1MB 10MB
0

20

40

60

80

100

120

140

160

180

Job Size

T
im

e
(s

ec
)

1 Job
10 Jobs
100 Jobs

Figure 3: Checkpoint times for a schedd
with varying number and size of jobs.
Note: The x-axis is log-scale

100KB 1MB 10MB
0

10

20

30

40

50

60

70

80

90

Job Size

T
im

e
(s

ec
)

1 Job
10 Jobs
100 Jobs

Figure 4: Restart times for a schedd with
varying number and size of jobs.Note:The
x-axis is log-scale

scheddmigratewhich automates many of the steps. The user must only specifythe schedd
to migrate, the schedd to submit the job to, and the preferences and requirements for the
migration. scheddmigrate executes scheddcheckpoint, generates the job submission file
with the appropriate preferences and requirements, and submits the scheddrestart job. The
astute reader may be wondering, how one can submit anything to a schedd if the schedd
service on a machine has already been shutdown and checkpointed. Condor allows remote
submission to a schedd. The scheddrestart job can easily be submitted to a schedd on
another host.

6 Performance Analysis

To ensure that the cost of our checkpointing technique is notoverly restrictive we performed
a series of benchmarks. These benchmarks were run on a machine with a Intel P4 2.40GHz
processor, 512MB of RAM, running the Linux 2.4.21 kernel.

Figure 3 illustrates the average checkpoint times of a schedd over five runs with 1, 10,
and 100 jobs of size 100KB, 1MB, and 10MB. Job size, as referred to here, is the total
size of a job’s executable and required input files. Breakingthese tests down into micro-
benchmarks of the individual components we found that csar dominates the checkpoint
time, accounting for over 90% in all cases. jobqMD and configMD together complete in
less than 150 milliseconds even in the worst case.

Figure 4 displays the average restart times of a schedd over five runs with 1, 10, and 100
jobs of size 100KB, 1MB, and 10MB. Breaking these tests down into micro-benchmarks of
the individual components we found that csi dominates the restart time, accounting for over
90% in all cases. jobQMD and configMD together complete in less than 60 milliseconds
even in the worst case.

11

These figures show that logically checkpointing and restarting the schedd scales linearly
with the size and number of jobs. Logically checkpointing a schedd with 100 10MB jobs,
which yields a 1GB compressed schedd image, still completesin less than 180 seconds.
A schedd can be restarted from this same image in less than 90 seconds. Given Con-
dor’s emphasis on high throughput computing we feel that these times are within reason.
Our micro-benchmarks indicate areas of improvement, namely in csar and csi. A sim-
ple improvement to increase performance may be to not compressing the schedd image.
We introduced compression to reduce migration overheads due to network transmission.
However, when migrating within a fast local network it may bemore efficient to send an
uncompressed image.

7 Related Work

Service Continuations [28] and service migration in the Keakernel [30] both provide ker-
nel space for a service to store its state. After migration this state is returned to the service.
Both of these implementations assume uniform access to the home file system. Service
Continuations assumes a uniformly mounted distributed filesystem, while Kea only pro-
vides migration of a service within a single machine, between user and kernel space. Luo
and Yang present the idea of zero-loss web services [17], however, their work is less service
migration and more service fail-over as requests for a service are duplicated to a a backup
service. Network address rewriting is used to switch from a primary service to the backup
in during failure.

Process migration is closely related to service migration.Sprite [12] and Charlotte [10] are
examples of in-kernel implementations of process migration. Sprite and Charlotte assume
identical system images on both the source and target machines, including uniform file
access. Additionally, Sprite has residual dependencies onthe source site that allows users
to query the source site about processes that have been migrated.

Zap [20] is a kernel module that allows groups of processes tobe migrated without breaking
their network connections. Zap even virtualizes the file system to allow a uniform view if
the migration location can access the process’s home file system. However, Zap does not
include any of a process’s files in the checkpoint so it cannothandle migrations outside the
range of the process’s home file system. Further, a failed Zapcheckpointed process could
not be safely restarted from the checkpoint because the filesthe process depends on may
have been modified by the process after checkpoint but prior to failure. The Condor system
also provides process checkpointing [16]. However, this checkpoint mechanism relies on
remote I/O back to the source site to provide a uniform view ofthe file system.

Internet Suspend/Resume [15] uses VMWare [9] to checkpointand migrate an entire oper-
ating system. This requires a process to run in a virtual machine even when it will never
migrate. Further the current implementation of VMWare onlysupports x86 architectures.

The Tui System provides a migration architecture that dynamically captures and translates
a processes data into machine independent form at run-time [26]. However, this approach

12

relies on a specialized compiler and only works on type-safeprograms.

8 Conclusion and Future Work

We have developed a set of techniques for checkpointing a service that removes the check-
pointed data’s dependencies on the host machine. We have created a multi-component
architecture to apply this technique in mobilizing the Condor High Throughput System’s
distributed scheduler, the schedd. Further, we have used Condor to schedule the placement
of the migrated service based on an arbitrary user-defined set of requirements and prefer-
ences. Additional work will be needed to determine whether these techniques are broadly
applicable to other services. However, we feel that many services built using the crash-
only approach proposed by Candea and Fox [11] will be able to take advantage of these
migration techniques.

Our techniques for service migration do not provide a seamless migration in that there may
be a brief interruption in service. In the future we may extend these techniques to include
technologies such as MobileIP [21], SIP [31], or VNAT [27], to provide uninterrupted
service migration. Our current implementation of the mobile schedd includes an operating
system and machine architecture independent marshalling of the schedd’s state. However,
this state must be packaged with the schedd architecture specific binaries at checkpoint
time which limits the architectures and operating systems the schedd can be restarted on.
We intend to modify the schedd installer to ftp the appropriate binaries for the target site’s
operating system and architecture during installation. This way a schedd’s restart will only
be limited by the platforms supported by Condor and available at the ftp site.

References

[1] Apache Struts, http://struts.apache.org/.

[2] Emacs, http://www.gnu.org/software/emacs/.

[3] Gzip, http://www.gnu.org/software/gzip/.

[4] Java 2 Platform Enterprise Edition, http://java.sun.com/j2ee/.

[5] Kazaa, http://www.kazaa.com/.

[6] Microsoft .NET, http://www.microsoft.com/net/.

[7] Tar, http://www.gnu.org/software/tar/.

[8] The Apache Jakarta Tomcat, http://jakarta.apache.org/tomcat/.

[9] Vmware, http://www.vmware.com.

[10] Yeshayahu Artsy and Raphael Finkel,Designing a process migration facility: The
charlotte experience, IEEE Computer22 (1989), no. 9, 47–56.

13

[11] George Candea and Armando Fox,Crash-only software, 9th Workshop on Hot Topics
in Operating Systems, May 2003.

[12] Fred Douglis and John K. Ousterhout,Transparent process migration: Design alter-
natives and the sprite implementation, Software - Practice and Experience21 (1991),
no. 8, 757–785.

[13] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole,Exokernel: An operat-
ing system architecture for application-level resource management, Symposium on
Operating Systems Principles, 1995, pp. 251–266.

[14] Ian Foster and Carl Kesselman (eds.),The grid: Blueprint for a new computing in-
frastructure, Morgan Kaufmann, 2003.

[15] Michael Kozuch and M. Satyanarayanan,Internet suspend/resume, Fourth IEEE
Workshop on Mobile Computing Systems and Applications, April 2002.

[16] Michael Litzkow and Marvin Solomon,Supporting checkpointing and process mi-
gration outside the unix kernel, Proceedings of the Winter 1992 USENIX Conference
(San Francisco, CA), January 1992, pp. 283–290.

[17] Mon-Yen Luo and Chu-Sing Yang,Constructing zero-loss web services, 20th IEEE
Intl. Conference on Computer Communications, June 2001.

[18] Sun Microsystems,RPC: Remote Procedure Call Protocol specification: Version2,
RFC 1057 (Informational), June 1988.

[19] Paul V. Mockapetris and Kevin J. Dunlap,Development of the domain name system,
SIGCOMM, 1988, pp. 123–133.

[20] S. Osman, D. Subhraveti, G. Su, and J. Nieh,The design and implementation of Zap:
A system for migrating computing environments, 5th USENIX Symposium on Oper-
ating Systems Design and Implementation, December 2002, pp. 361–376.

[21] C. Perkins,IP Mobility Support for IPv4, RFC 3220 (Proposed Standard), January
2002, Obsoleted by RFC 3344.

[22] Larry L. Peterson and Bruce S. Davie,Computer networks, second ed., Morgan Kauf-
mann, 2000.

[23] Raghu Ramakrishnan and Johannes Gehrke,Database management systems, third
ed., McGraw-Hill Science/Engineering/Math, 2002.

[24] Rajesh Raman, Miron Livny, and Marvin Solomon,Matchmaking: Distributed re-
source management for high throughput computing, Proceedings of the Seventh IEEE
International Symposium on High Performance Distributed Computing (HPDC7)
(Chicago, IL), July 1998.

14

[25] Mendel Rosenblum and John K. Ousterhout,The design and implementation of a
log-structured file system, ACM Transactions on Computer Systems10 (1992), no. 1,
26–52.

[26] Peter Smith and Norman C. Hutchinson,Heterogenous process migration: The Tui
system, Software - Practice and Experience28 (1998), no. 6, 611–639.

[27] Gong Su and Jason Nieh,Mobile communication with virtual network address trans-
lation, Tech. Report CUCS-003-02, Columbia University, February2002.

[28] Florin Sultan, Aniruddha Bohra, and Liviu Iftode,Service continuations: An operat-
ing system mechanism for dynamic migration of internet service sessions, 22nd Inter-
national Symposium on Reliable Distributed Systems, 2003.

[29] Douglas Thain, Todd Tannenbaum, and Miron Livny,Distributed computing in prac-
tice: The Condor experience, Concurrency and Computation: Practice and Experi-
ence (2004).

[30] A. Veitch and N. Hutchinson,Dynamic service reconfiguration and migration in the
Kea kernel, CDS ’98: Proceedings of the International Conference on Configurable
Distributed Systems, IEEE Computer Society, 1998, p. 156.

[31] Elin Wedlund and Henning Schulzrinne,Mobility support using SIP, WOWMOM,
1999, pp. 76–82.

15

