

A Modification of OpenMosix’s Process Migration
Algorithm to Improve Cluster Performance and

Scalability

 Travis Frisinger
Computer Science Department

 University of Wisconsin-Eau Claire
 Eau Claire, WI 54702
 frisintm@uwec.edu

 Abstract

By modifying OpenMosix’s process migration algorithm from its current state,
one based on an economic algorithm, to allow processes generated on the same
node to have a higher chance to migrate to the same host node to improve an
OpenMosix cluster’s performance and scalability. The reason for this is that once
a process is migrated to a new node a communication channel is opened between
the Unique Home Node (UHN) and the host node. This channel is very resource
intensive and is required for each process that is migrated. By migrating processes
generated on the same node to a sub set of the collection one can devote more of
the clusters resources to processing the individual processes. This would be done
by reusing the communication channels for processes that have been migrated
from the UHN to the same host node, hence increasing the performance of an
OpenMosix cluster.

 1

1 Introduction

There are two types of High Performance Computing (HPC) clusters a Beowulf
cluster and an OpenMosix cluster. In a Beowulf cluster a software layer either
MPI or PVM is required to allow the cluster to function. This software layer is a
parallel message passing interface that allows application written in C/C++ or
FORTRAN to run on the cluster. This also requires the current applications
written in C/C++ or FORTRAN be re-written to use this special software layer.

With an OpenMosix cluster a software patch is applied to the Linux kernel that
allows information about each node of the cluster to be exchanged. This
information is used to evaluate nodes for process. An OpenMosix cluster does not
require that application be rewritten to run. OpenMosix does suffer from
scalability issues because of the overhead involved with process migration and
remote execution. By selective modification of the process migration algorithm it
is possible to increase OpenMosix's scalability and process execution time.

2 Evaluation Environment

The testing of modifications to the OpenMosix kernel is done thought the use of
virtual machines. One virtual machine is placed on each physical machine running
Windows XP. Each virtual machine is assigned its own IP address, instead of
using NAT to translate between the virtual machine and the physical machine's
IP. This is done to reduce the amount of network overhead between the virtual
machine and physical machine. The virtual machine does add a bit of overhead
and might slightly affect the outcome of the analysis, but since all under lying
windows machines have the same configuration, it is safe to assume that the
affects of overhead is constant or very close to constant and may be ignored.

The tests to the modifications are done using Free Losses Audio Codec (FLAC)
encoding. This test was chosen because it is easy to scale the number of parent
processes and is known to fork child processes; both of which are requirements
for evaluating the efficiency of the modification to the OpenMosix kernel.

3 OpenMosix Background

“openMosix is the GPLv2, Open Source, project to extend the outstanding
MOSIX project. New releases of MOSIX became proprietary software in late
2001 and openMosix was begun February 10, 2002 by Moshe Bar to keep this
highly regarded Linux Clustering solution available as open source.” [1]

 2

Each process has a Unique Home Node (UHN); this is usually the node to which
the user logged into. Since not all data related to the process is migrated along
with the process, a communication channel is maintained to the UHN to allow the
process access to data left behind. This communication channel is a very resource
intensive and is a short coming of OpenMosix clusters. Since each migrated
process requires a UHN communication channel, as the cluster takes on more
processes, more and more resources are required to perform remote executions of
the processes.

4 Modification of Process Migration Algorithm

There where two major steps in modifying the process migration algorithm. First
off was to develop a way for migrated process information to spread around the
cluster. This was to be used to evaluate possible nodes for migration candidates,
with emphasis to be place on nodes that already contained processes from the
UHN. Secondly, a method was needed to determine when to add a new node to
the pool of possible migration candidates along with restricting the number of
communication channels used to access resources on the UHN.

This modification resulted in a need to develop a message packing strategy when
accessing resources on the UHN. It was believed that the reduction in the number
of communication channels would free up more cluster resources allowing
processes to execute faster and improve the scalability of the cluster.

4.1 Modification One

The first attempt to disseminate UHN and migrated child process information was
a peer-2-peer protocol, but this was quickly abandoned as too resource intensive.
It was discovered that a slight modification to the current OpenMosix framework
would allow the information to reach all nodes with out adding extra processing
and network overhead to the cluster. Once this information was allowed to reach
the nodes just like all other load information it could be used to evaluate
migration candidates. The current migration algorithm required all nodes to be
evaluated before choosing the best node to migrate the process to.

By simply short circuiting the evaluation to grab the first node with migrated
processes there was a .2% efficiency increase when the cluster contained more
then four nodes. When it contained less then four nodes there was almost no
difference at all. This is attributed to the fact that less CPU cycles where used in
kernel space to evaluate the migration of a process. Since the evaluation process is
uninterruptible and must finish before any other CPU cycles may be used to
process the cluster's user space processes.

 3

4.2 Modification Two

During the second phase of the project the goals where how to restrict the amount
of available nodes for migration from the UHN and to implement a message
packing strategy to restrict the number of communication channels to the UHN.

Currently there is a limit of only allowing up to one-half of the nodes as migration
candidates for processes leaving their UHN. There is also a restriction of only
allowing a two-to-one ratio of processes to communication channels. This is
placed as an arbitrary restriction and will be replaced with a more dynamic
algorithm for limiting the number of nodes a UNH may send processes to. This
also raises another issue encountered during the course of this portion of the
research, which is that currently once a process has been migrated it may only
stay at the first host node until it finishes execution.

This is because there is no longer a one-to-one mapping of communication
channels to migrated processes. There is the possibility of orphaning a process in
the cluster; this is currently being dealt with. There is also a need to modify
migration candidacy, possibly requiring two processes from the same UHN to
migrate instead of one. The cluster should not have to incur the overhead of the
communication channel for just one process.

Currently, there is a .9% percent performance increase when the number of nodes
is greater then eight. There is a .3% increase in performance when the number of
nodes is less then or equal to four. The increase in efficiency is due to the fact that
the cluster is using more resources for user space processes; even though it is
limiting the number of nodes a process may migrate to. Once the restriction of
single migration is removed the cluster should realize a universal improvement in
performance of 2-3%.

5 Future Modifications of Process Migration Algorithm

The next step is to allow migration of processes beyond a single node to see the
impact of this on the cluster’s performance. This may result in either a dynamic
approach to selecting the number of nodes a process may migrate to, or a
statically restricted amount. The statically restricted method would be preferred
because it would require less overhead. The down side to the static restriction is
that it may impact performance slightly.

Then there is the process of evaluating the impact of restricting the
communication channels to dynamically evaluated value or to set it statically.

 4

Once again static restriction is the preferred choice due to the lack of overhead,
but it may impact performance even more then a dynamically chosen value. The
reason being it is harder to predict the communication needs of a processes set,
hence the possible need to allow a dynamically chosen number of communication
channels.

6 Summary

The amount of overhead required to migrate and execute a processes remotely is
about 3.9% more then that required to execute that same processes locally. With
the modifications the overhead is 3.3% percent of local execution, a .6% increase
in efficiency. Since this is per processes incurred overhead there are greater gains
in performance as the amount of processes in the cluster increases.

Even though the performance gains where not at the level expected, about 2%,
there where many reason for this. One is the lack of diversity in processes sets, it
would be nice to run more simulations on a wide range of processes sets to
evaluate the processes sets impact on the clusters performance. There is also the
possibility that overhead incurred from the use of virtual machines may have
played a greater role then expected.

Overall the experiment was a success, on other future goal would be to scale the
cluster well beyond sixteen nodes to maybe two or three hundred nodes on
physical hardware and evaluate the modifications impact.

7 Resources

[1] Knox, Bruce. openMosix, an Open Source Linux Cluster Project.
 10 Feb. 2002. The openMosix Community.
 <http://openmosix.sourceforge.net/>.
[2] Bar, Dr. Moshe. Home Page. 2003.
<http://openmosix.sourceforge.net/linux-kongress_2003_openMosix.pdf>.

[3] Hanquez, Vincent. om_internals. 28 Dec. 2004.
<http://tab.snarc.org/article/om_internals.xhtml>.

