
The Challenges of Parallelism 
 

Curt Hill 

Mathematics and Computer Science Department  

Valley City State University  

101 College St SW 

Valley City, ND  58072 

701 845-7103 

Curt.Hill@vcsu.edu  
 
 
Abstract:  

 
This paper is a call to give increased attention to parallel programming in the Computer 
Science Curricula. This emphasis needs to occur in comparatively low level classes 
considering our historical treatment of concurrent programming. Moreover, it should not 
be an optional topic, but every student should have sufficient exposure to the issues.   
The software industry is presented with a public relations problem. The accustomed 
increase of computer speed will only be sustained by the used of further parallelism, 
including multi-core processors. The current generation of software is poorly equipped to 
exploit the soon to arrive multi-core processors. The public will know that their machine 
is faster but see no performance increase and justifiably blame the software 
manufacturers. Hence, the public relations problem will eventually arrive at the doorstep 
of Computer Science educators. The time to do something about this is now. 
The paper discusses the historical reasons for the scant emphasis on parallel 
programming and considers some of these types. Certain types of parallelism, such as 
Single Instruction Multiple Data, has been important for the solution of certain types of 
problems, but will not be of much help in this case, while multiple thread programming 
will become very important. The paper then asserts that the advent of multi-core CPUs in 
desktop and server computers alike will obligate a change and document that these CPUs 
will become common in 2005.  
The paper claims that part of the problem in teaching parallelism in the undergraduate 
curriculum is the support given in various programming languages. Therefore, several 
common programming languages as well as supplemental libraries are briefly considered 
in regards to this support. Concurrent programming is also complicated by the new types 
of errors that are added to the testing problem. These types of problems will also be 
considered.   
The paper concludes with some recommendations concerning programming languages 
and the curricula.  



Introduction. 
 
Like any discipline, the advancements in Computer Science occur when someone has a 
good idea to solve a problem. That idea may be completely new or the collation of 
previous work in a new form. However, the importance of the problems to motivate these 
ideas should not be underestimated. The area of Programming Languages serves as an 
example in this area. The problem is a tremendous resource that is difficult to use in its 
native form. Hence, numerous programming languages have been proposed that make the 
exploitation of the resource much easier. The sub-problems include parsing, code 
generation and the like. Operating Systems is a different kind of a solution to nearly the 
same problem.  

Mainly this problem has not changed much since the 1940s. The only substantial change 
is the speed and capability of the computer has increased dramatically. The justly famous 
Moore’s Law has been in effect for several decades now and the advent of the 
microprocessor was not the beginning of the increase of speed and capability. This 
increase in capacity has allowed solutions to change in that we now tolerate much more 
overhead than formerly. Imagine the scenario if Java had been proposed in the 1970s 
rather than the 1990s. Although its class structure would have been well ahead of its time, 
the whole concept of interpreting a general purpose language in that day would have 
killed the project. Java is clearly the result of a time when CPU cycles are inexpensive. 

One thing that has not changed is the dominance of the single processor system. 
However, this too will pass and very soon now[1]. As Computer Science Educators we 
can clearly see the change in the near future and now is the time to start preparing for the 
inevitable. This paper is largely a call to action. 

 

The Triumph of Parallelism. 
 
The bulk of our efforts have been devoted to sequential problems, because our machines 
have been largely sequential. A variety of parallel approaches dating back to the 1960s 
have been attempted some with considerable success. However, these have comprised a 
very small part of the discipline as these machines have comprised a small part of the 
CPU population.  

Hidden parallelism crept into each generation of processors as the speed increases that 
could be accomplished in other ways diminished. One example of this is transformation 
of the Intel 80386 to the Pentium. The 80386 was essentially a simple processor. The 
80486 introduced caching but received most of its performance improvements from a 
decrease in component sizes. The Pentium then was a fully pipelined super scalar device.  

These changes have not had a large effect in the curriculum since they are mostly 
transparent to most programming. We have dealt with pipelining and caching in an 
architecture course or the like. There has also been an improvement in compiler design to 



optimize output code for a pipelined machine, but even these changes were usually at the 
graduate level. The undergraduate curriculum was still mostly safe.  

The advent of the World Wide Web promoted the use of multi-processor servers and 
distributed systems. Very early in the Pentium product line the processors could be easily 
configured into a multi-processor system that shared memory. However, like pipelined 
processors this did not have a large effect in the undergraduate curriculum. The hardest 
hit class was the database class. A DBMS is typical server system with large amounts of 
traffic and even on a uni-processor it must deal with separate requests independently. 
Often this was the first exposure to concurrent processing for the undergraduates 
students. 

The advent of Computational Science seems to be the simulations of the nuclear 
explosions in government research labs. However, since that time simulations of complex 
natural systems has become increasingly important. This in turn has been the driver for 
even larger computing systems, including grid computing and distributed computing. One 
important project that demonstrated the concept was the Search for Extra Terrestrial 
Intelligence. It developed a screen saver that was able to exploit countless idle personal 
computer cycles for the processing of the vast quantities of data that it had accumulated. 
This was a success because it cost the user nothing and made them part of what was seen 
as a noble effort. SETI@Home has consumed in excess of 6 × 1021 floating point 
operations[2]. It also demonstrated a proof of concept that has been followed by several 
other projects. However, it also demonstrated in practice what we were seldom teaching 
in the classroom. This was not necessarily a problem, how many programmers do we 
need for such projects?  

Most of these advances could be marginalized. This may be seen rather clearly in the 
2001 Computing Curricula of ACM and IEEE [3]. Parallel programming is not 
mentioned at all in the Programming Fundamentals core, it is only optional and last topic 
in the Algorithms and Complexity core and gets somewhat more attention in the 
Architecture and Organization core. This observation of light coverage is not intended as 
a criticism of the Joint Task Force on Computing Curricula. At the time of publication the 
report reasonably reflects the state of the art.  

 However, our dear friend Moore’s Law was on a collision course with the laws of 
physics, with no doubt about the winner. The increase in speed due to the decrease in size 
caused an increase in the production of heat. This was no surprise to the integrated circuit 
manufacturers, but the press releases started in 2004. AMD [4] demonstrated a dual-core 
CPU and anticipates delivery in mid to late 2005. The reigning champion, Intel [5] threw 
in the towel as well, announcing that it was to implement multi-core processors 
throughout their product line. The determination is that a multi-core processor could 
deliver more speed with less heat. Both of these manufacturers will offer these products 
for the desktop market as well as the server market. 

This causes the software industry a public relations problem, which will become a 
Computer Science problem. The hardware manufacturers will say that their next 
generation of products is still in conformance with Moore’s Law, but the consumers will 



say that their new PC is not substantially faster than their last one. They will both be 
right. One important problem is that the current crop of software is not up to the task of 
exploiting the parallelism in such machines. (Another of the problems is that disks and 
memory have not increased at nearly the rate of the CPU, but that problem is not the 
focus of this paper.) We do not have to wait for the multi-core processors to appear in 
desktops, the Hyper-Threading processors are already demonstrating it. Since this is not a 
server problem but a desktop problem it becomes increasingly clear that the exploitation 
of parallelism needs to appear earlier and more often in the undergraduate curriculum.  

The Language Problem of Parallelism 
One of the problems presented by parallelism includes expressing multiple threads of 
execution in our current programming languages. Since parallelism has not been a 
burning issue, most programming language designs have tended to ignore the problem. 
Now consider programming language support for multiple threads of execution.   

Java and Ada seem to have the most thorough approach to concurrency among popular 
languages. The syntax of Java has only the synchronized keyword in the basic language 
but standard class libraries provide most of the concurrent capabilities. The Remote 
Method Interface gives capabilities for distributed computing and the Thread class and 
Runnable interface provide the parallelism. The Java Virtual Machine is itself multi-
threaded so there is a good capability for exploiting multiple CPUs. The Java approach 
seems to be well thought out, which makes Java a good choice of language for instruction 
in concurrent programming. However, Java has not gained preeminence for high 
performance computing for a variety of reasons. 

Ada concurrency is largely built into the language itself, with a significant portion of the 
syntax devoted to concurrency issues. These include the reserved words task, entry, 
accept, requeue, and delay. This provides for multiple threads and synchronization 
between these threads. The most significant problem with Ada is the lack of general 
acceptance. It has many features to commend it but neither the industry nor academia 
have made dramatic moves towards the language.  

Most programming languages have no real provision for parallel execution. C and C++ 
are typical. The default approach is to merely give access to the application program 
interfaces of the underlying operating system. This forces the language to be dependent 
on the concurrency model presented by the operating system and prevents machine 
independence. Platform independence is one of the reasons to use high level languages in 
the first place. However, it should be noted that neither language provides for files either, 
leaving that to the libraries as well.  

There are several parallel extensions to C or C++ that have gained some following. These 
include OpenMP and HPC++ and these two will be briefly considered. 

The OpenMP[6] system enhances the use of C or C++ with specialized #pragma 
statements. These #pragma statements give a parallel interpretation to otherwise 
sequential statements. These may be implemented by modification of the preprocessor 



which is generally much easier than the compiler itself. Moreover the language definition 
of C insists that a #pragma statement not understood by a compiler is merely ignored. 
Thus, an OpenMP compliant program is merely sequential on a non-compliant system. 
The OpenMP system uses a fork-join parallelism model, which works well for large array 
manipulation. However, this may not be the best model for exploiting the parallelism of 
future desktop computers. 

HPC++[7] takes a somewhat different approach. It is a class library that provides 
multiple thread as well as distributed computation capabilities. The thread model is based 
upon the Java Thread class and Runnable interface. The code is designed for a variety of 
UNIX systems, but since the source code is provided it may be ported to any C++ 
environment. This project appears to currently be inactive.  

Both OpenMP and HPC++ were designed for somewhat specialized computations, 
usually involving large-scale numeric calculations, simulations and the like. This is not 
the domain of the single desktop, but the multi-threading capability is what is required to 
exploit the desktop of the future.  

The Errors of Parallelism 
Concurrent programs have all the usual problems of sequential programming, but add 
some new ones as well. These problems include race errors and deadlocks. 
Unfortunately, both of these may be non-deterministic, since they are sensitive to 
machine load and other unpredictable factors. In summary the program may run the same 
test data multiple times and give differing answers. This can be particularly frustrating 
when the use of a debugger causes the errors to cease, since this also affects timing. The 
testing phase is challenging enough without the introduction of heisenbugs, that only 
manifest themselves sporadically. A review of these two types of errors will be 
considered next. 

A race error occurs when two or more threads update a variable without any serialization 
mechanism. Suppose that two threads desire to add different values to the same shared 
variable: 
Thread A: share = share + 2; 
Thread B: share = share + 5; 
Figure 1 shows typical X86 machine language. 

Line number Thread A Thread B 

1 ;share = share + 2; ;share = share + 5; 

2 mov  eax,share mov  eax,share 

3 add eax,2 add eax,5 

4 mov share,eax mov share,eax 



Figure 1. Machine language demonstrating a race error. 

This code may result in three possible results in variable share. The desired effect is for 
share to increase by 7, which would be the most frequent occurrence. However, the add 
of 5 may be lost if Thread A executes line 2 and then is suspended, at which time Thread 
B executes lines 2-4. When Thread A resumes it’s EAX register holds a value that it not 
updated. Reversing the roles of A and B produces an update of share increasing it by 
only 2. This effect may be seen on any single CPU computer where an update requires 
multiple machine language instructions. In this case single instructions, such as these, are 
generally indivisible. On hyper-threading machines and multi-core processors this error 
may occur on even single instructions. If the multiple processors have separate caches for 
data the problem is exacerbated. Moreover, if the update is to a file or database the 
problem is also compounded by the long instruction sequences and I/O delays. 

There are a number of ways to resolve such a problem. Such a portion of code is a critical 
section and solving this problem requires serializing the two pieces of code so that when 
one starts the sequence the other is effectively prevented from starting until the first is 
finished. A number of mechanisms have been suggested for this serialization, including 
semaphores and monitors. 

Java has a synchronized reserved word[8] that may be added to a method declaration, 
which forces threads to serialize as they call the method. Hence, the method is presumed 
to be a critical section. This technique would not help the above example unless both 
pieces of code were in the same synchronized method. In that case a synchronized 
statement obtains a lock on an object and then executes a block of code. If the object is 
locked by another thread this instance is suspended until the previous lock is released.  

A deadlock situation occurs when two threads each have a lock on some resource.  

Thread A Thread B 

synchronize(s){ 
  statement 1b; 
  synchronize(t){ 
    … 
  } // inner 
 } //outer  

synchronize(t){ 
  statement 1b;  
  synchronize(s){ 
    … 
  } // inner 
 } //outer 

Figure 2. Recipe for deadlock. 

In figure 2 a deadlock situation becomes possible. If both threads can start statement 1 
before the other arrives at the second synchronize then a deadlock situation occurs. Each 
holds one of two locks and then asks for the remaining. The delightful part of 
concurrency is that in most cases this will very likely work without a problem. However, 
as the timing changes for subtle and unpredictable reasons the threads freeze.  



Most operating systems provide this type of functionality through their APIs as well as 
others. However the use of APIs may be efficient in terms of machine resources but 
diminishes the portability to other platforms. 

Recommendations. 
The introductory programming class should be taught with a language possessing the 
following characteristics: 

• Simple enough for introductory students. 
• Contains the features that should be exposed to students. This paper argues that 

concurrency is one of many such features.  
• Good acceptance within the industry. 
• Standard versions are available on all platforms. 

Unfortunately, no such language currently exists! Instead, Computer Science departments 
and instructors wrestle with the question of what is the lesser of the possible evils. 
Therefore it seems that those who design languages still have work to do. 

Given the reality of no perfect language the early programming curriculum must be 
changed to incorporate parallelism. Even in a language with no standard support for 
concurrency, such as C++, it is far better to use the operating system’s APIs then to miss 
the topic altogether. Languages, like Java and Ada which have adequate facilities have 
even less excuse. It is typical for the first programming class to be rather full, but this 
topic needs to be considered very shortly thereafter. In the future concurrency may be as 
important a topic as recursion, so needs to be covered early and often. 

References. 
[1] Fordahl, Matthew (2004). Next-generation computer chip to hold 2 engines. 

http://seattlepi.nwsource.com/business/205282_yechips27.html. Date accessed 28 
December 2004. 

[2] SETI (2004). Current statistics. http://setiathome.ssl.berkeley.edu/totals.html. Date 
accessed 24 December 2004. 

[3] Chang, Carl and Peter J. Denning (2001). Computing Curricula 2001 Computer 
Science. Final Report of the Joint Task Force on Computing Curricula. 
http://www.computer.org/education/cc2001/final/index.htm Date accessed 22 
December 2004. 

[4] AMD (2004). AMD Demonstrates World’s First x86 Dual-Core Processor. 
http://www.amd.com.hk/us-en/0,,3715_11787,00.html. Date accessed 22 December 
2004. 

[5] Jajeh, Daniel P (2004). Intel accelerates in a new direction.  
http://www.intel.com/employee/retiree/circuit/righthandturn.htm Date accessed 22 
December 2004. 

[6] OpenMP (2002). OpenMP C and C++ Application Program Interface. 
http://www.openmp.org/specs/mp-documents/cspec20.pdf. Date accessed 10 March 
2005. 



[7] Extreme! Computing (1999). High Performance C++. 
http://www.extreme.indiana.edu/hpc++/index.html. Date accessed 22 December 
2004. 

[8] Sun Microsystems (2004). JavaTM 2 SDK, Standard Edition, Documentation. 
Version 1.4.1. http://java.sun.com/products/archive/j2se/1.4.1_07/ Date accessed 10 
March 2005. 


