
Approximatingδ − covers for estimation of
Hausdorff dimension using Genetic Techniques

Benjamin J Edwards
Mathematics and Computer Science Department
South Dakota School of Mines and Technology

Rapid City, SD 57701
Benjamin.Edwards@gold.sdsmt.edu

March 11, 2005

Abstract

Mandelbrot defined a set as fractal if it has a non-integer Hausdorff dimension. Unfortu-
nately in the case of these fractal sets, Hausdorff dimension is often extremely difficult to
calculate analytically or numerically. A pivotal element in estimating and Hausdorff mea-
sure and dimension is aδ − cover of a given set. Genetic techniques are used to create
optimalδ − covers for any given set. Theδ − cover consists of a collection of disks with
a given center and radius. Because this definition of a population member moves beyond
the traditional binary representation presented by Holland [3] novel techniques for muta-
tion and recombination are developed. Mutation occurs by adding individual disks to the
candidateδ− cover. The fitness of each population member is determined through a linear
combination of different covering possibilities. An example run is shown and future work
discussed.

Benjamin James Edwards
Mathematics and Computer Science

South Dakota School of Mines and Technology
Rapid City, SD 57701

Benjamin.Edwards@gold.sdsmt.edu

1 Introduction to Fractals and Hausdorff Dimension

The applications of fractal geometry to physical systems has been pursued since the in-
troduction of fractal sets by Mandelbrot in 1982 [1]. Mandelbrot defined a fractal set as
simply a set with non-integer Hausdorff dimension. Hausdorff dimension is preferable to
other dimensional quantifiers as it is defined for all sets and because it is based on measure
it is easy to manipulate mathematically [2]. Unfortunately it is difficult to determine ana-
lytically or through numerical computation.

To begin a review of Hausdorff dimension we defineU to be a non-empty subset ofRn,
and|U |, or the diameter ofU , to be the greatest distance between any two pointsx, y εU .
If {Ui} is a countable collection of sets of diameter less thanδ such thatF ⊂

⋃∞
i=1 Ui with

the diameter ofU being less thanδ for all i, we say{Ui} is aδ − cover of F [2].

Suppose thatF ⊂ Rn ands ε R ands > 0. For anyδ > 0 Hausdorff Measure can be
defined as

Hs
δ(F) = inf{

∞∑
i=1

|Ui|s}

where{Ui} is aδ − cover of F . More simply we are examining all the covers ofF with a
diameter of at mostδ. We want to minimize this sum of diameters raised to thesth power.
If we allow δ to decrease the class of permissible covers ofF is reduced. So the infinum of
Hs

δ(F) increases, and we approach a limit asδ → 0. We write thes dimensional Hausdorff
measure ofF as

Hs(F) = lim
δ→0

Hs
δ(F)

.
This limit exists for any subsetF of Rn, though the limiting value can be0 or∞, and the
proof of which is beyond the scope of this paper. In fact this value is0 or ∞ for most
values ofs and it is the point at which the limit changes from one to the other that we are
interested in. We define

DH(F) = sup(s : Hs(F) = ∞) = inf(s : Hs(F) = 0)

as the Hausdorff dimension of a setF [2].

It is clear to see a pivotal portion of the estimation of Hausdorff dimension is the min-
imal δ − cover. We can approach this as an optimization problem, and therefore apply
genetic techniques to develop the minimumδ − cover given a set to be studied. The de-
velopment of a minimalδ − cover is analogous to the sphere packing problem inR2. This
paper concerns itself with creation of this cover using a genetic algorithm to develop a soft
disk packing requirement.

1

2 Disk Packing

2.1 History and Background

The problem of disk, or circle packing, has been well studied and has long history. The
problem was first studied by Kepler in 1611, when he examined the sphere packing prob-
lem and attempted to prove that the densest possible is the cubic or hexagonal packing, and
that its packing density isηKepler = π

3
√

2
. This became known as the Kepler Conjecture the

proof of which was elusive for many years. The approximation for the maximum density
was refined many times over, before the density was finally proven by Hales in a series of
papers culmination in 1998 [4].

In 2 dimensions the problem is simplified, and an equally great amount of research has
been done. For disks of equal size the maximal packing density is given byηh = 1

6
π
√

3
and was proven by Gauss to be the hexagonal arrangement seen in Figure 1. This packing
density is defined for disks of equal size given a specific boundary.

Figure 1: Hexagonal Packing

Alternatively disk packing with disks of various sizes is also heavily studied under the
topic of discrete conformal mappings. This is an area of complex analysis. A conformal
mapping is a transformationw = f(z) that preserves local angles. Any analytic function
is conformal at any point where it has a nonzero derivative. It should be noted that when
applied to disk packing, all the disks remain tangential and within a given boundary [4].

2.2 Soft Disk Packing

The problem we wish to study is disks with a maximal radius, so we can create aδ−cover.
Moreover because the desired end result is an approximation of a cover of a given area,

2

we can allow a “soft-cover” to be possible. That is, a cover which contains some overlap
as well as boundary violations. We will use our soft disk packing method to develop a
δ − cover which can be used in the investigation of Hausdorff dimension in later research.

3 GA Work

3.1 Problem Space

To examine this disk packing problem we need a way to examine an area that needs to be
covered. A simple approach is taken. Each area to be covered is represented as a black
and white image. The area to be covered is represented in black and any extraneous area is
represented in white.

Each disk is represented by a colored disk drawn centered within our region. In this way we
can differentiate between the area to be covered, the disks themselves and any area outside
that which we are trying to cover. Moreover we can define a maximum size for each disk
and therefore define a specificδ − cover.

3.2 Population Members

To approach this problem with a genetic technique a novel method of representing the pop-
ulation members had to be determined. Rather than define each population member in a
traditional binary string format, each population member consists of a list of center points
and radii for each disk. A linked list is used as this allowed for easy implementation using
the C++ standard template library, and allows each population member to be of dynamic
size, allowing for smaller or larger collections of discs depending on the area being inves-
tigated.

Though the base of the population member is the list of disks of various sizes, more in-
formation about the population member was stored in a class comprising the list as well
as other values. These values included total area covered, overlapping area, appropriately
covered area, and extraneously covered area. These values were critical in calculating the
fitness of each population member, and were stored within each population member’s class
for computational efficiency.

To begin with an examination of the population member, we note that given any area we
are trying to fill with disks several occurrences can happen. Firstly, our disk may fall com-
pletely within an area that needs to be filled. This case can be seen in Figure 2.
Secondly, a disk can fall in an area that need not be filled. Finally, a combination of the
two can happen, a disk can fall on the border of one of these regions. The second and third
cases can be seen in Figure 3 and Figure 4 respectively.

3

Figure 2: A covering disk

Figure 3: A non-covering disk

In addition to these three cases a variation can happen on any of them in which two disks
in close proximity overlap each other. This can be seen in Figure 5.
In the disk packing problem we strive to ensure zero overlap as well as a maximal number
of disks covering appropriate area, and a minimum number of disks outside the area to be
covered. In this way we can begin to create a cost function and rank our members.

We approach this as a minimization problem. Adding cost to a population member based
on negative properties, and ranking them according to minimum cost. To determine how a
particular population member stands up, we simply draw each disk in its appropriate place
on the provided image. Then we can check pixel by pixel with the original and classify it.
We draw each disk in a color different from the black and white covering in the original
so we can distinguish where each disk lies and what areas it occupies. We can classify the
pixels in one of two ways: first it can be a non covered pixel which should be covered,

4

Figure 4: A half covering disk

Figure 5: Overlapping disks

or it can be a covered pixel which should not be. We do this by simply matching each to
a specific value. If on the image which we have drawn our disks there is a pixel which
is colored but on the original is white, we can count that pixel as an extraneous pixelPE.
If the pixel is black on both images we can surmise it is a non-covered or missed pixel,
PM . We outlined before that we also wanted to reduce overlap in our determination of the
δ − cover. To do this we can simply calculate the sum of the areas of the disks comprising
a particular population member, and take the difference between this and the actual number
of colored pixels present. This estimate of overlap will be denotedPO.

One more factor that deserves attention in our calculation of cost is the number of disks
we are using to cover the area. It is beneficial to encourage a large number of disks in the
cover, as it increases the probability of smaller disks occupying space in between larger
disks. We can now construct our cost function. The cost function can be seen below.

5

Cost = λ0PM + λ1PE + λ2PO − λ3S

Where eachλ represents a constant andS is the size of the cover. Differentλ values will
yield better results for different areas to be covered, and may need to be altered depending
on the area presented.

3.3 Creating the Population

With our population members defined we can create an initial population. The size of the
each of the members of the initial population is kept constant. A disk is created with a
random location within the image. Then a random radius is assigned to the disk. With
the random disk created we simply add it to the population member as a piece of genetic
material and repeat the process for the constant size defined for population members. This
process is repeated once again until the desired initial population size is reached.

3.4 Crossover

Because our population members are not of a conventional binary nature a new approach
had to be taken when creating new offspring. However the list nature at the core of our
population members provides an obvious solution. Because the location of the disks is ran-
domly distributed throughout the list we can be assured that taking genetic material from
any portion of the list is as effective as taking genetic material from any other portion of
the list. So the makeup of each offspring of two parents was determined in the following
way. Firstly the size of the list that makes up the majority of the offspring is determined
by an average of the two parents. Before creation this size is stochastically altered so as to
provide population members with varying amounts of genetic material.

After the size of the population member is determined its genetic makeup must be de-
termined. This is done by generating a random number between 0 and the sum of the two
ranks of the two parents. If the number is larger than the lower ranked, or better, parent a
disk is taken from the top of that parent and added to the child. If the number is less than
the rank of the higher ranked parent a disk from the bottom of the higher ranked parent and
added to the child. This process is repeated till the number of disks in the child is equal to
the aforementioned genetic material size.

In this way a larger portion of the lower ranked parent is present in the child and ‘bet-
ter’ genetic material is maintained in offspring.

3.5 Mutation

Mutation is important to any genetic solution to a problem. To move our population mem-
bers out of possible local minima a simple approach was taken. Random disks were added
to the population members while creating children. This was achieved by adding a certain

6

number of disks based on the number of disks already in the population member. This
number is a random value between 0 and a percentage of the genetic material present in
the population member. This percentage, which we will refer to as the mutation rate, was
altered in attempts to achieve maximal convergence. High mutation rates yielded the best
results and seemed to prevent the algorithm from stagnating in local minimums.

4 A Basic Run

A simple run of the program began as follows. An ellipsoid region embedded in a white
space is selected as the region needed to be filled. This region can be seen in the Figure 6.

Figure 6: A sample area

An initial population is created based on selected parameters. For this particular region, we
will start with an initial population of 500 members, with each population member having
200 disks within it.

The initial population is then sorted according to the following cost function. These values
were selected using a great deal of trial and error and seem to yield the best results.

Cost = PM + 2.1PE + 2PO − 7.8S

After the population is sorted, recombination takes place in the manner outlined above.
After creation each child is mutated at a given rate. For this particular run a mutation rate
of 10% was used. Each child is added to the population and the population is once again
sorted.

At this point we only wish to maintain a certain number of particularly fit individuals.
This is done in a dynamic manner. First an upper and lower bound are set. The population

7

is not allowed to grow beyond the initial population size, but is also not allowed to sink
below half of the population size. The exact number of population members is left to the
fitness of each member. If the population becomes large we wish to have more stringent
criteria for life within the population, but for low population numbers we wish to maintain
a higher number of individuals. This is done by taking a variable range of members within
a certain percentage of the most fit member. The following equation demonstrates how this
is implemented within the code.

Cost < BestCost(1 +
IntialPopulationSize

CurrentPopulationSize
c0)

Wherec0 is a constant. This simply means if a population member’s cost is within a certain
percentage, with a minimum ofc0 it is allowed to stay in the population. If it is above this
cost value it is removed. For our run we will selectc0 = .175.

In addition to this method of trimming the population, it was found that the algorithm
would stagnate on certain values when a dominate population member was created. Be-
cause a great deal of the most fit member’s genetic material is dispersed among the popu-
lation, the population becomes homogeneous and any optimization is slowed to a stop. To
avoid this each population member was given a lifespan of between 20 and 30 epochs. In
this way a population member would not dominate and create a homogeneous population.

This technique was used on our ellipsoid region and was run for 1000 epochs. Figure 7
is a plot of the cost as a function of epochs. It should be noted that convergence slows
down considerably towards the end of the run. The result of the run can be seen in Figure
8.
It should be noted that this is a soft cover, and that disks remain completely outside of
our region to be covered. Additionally, there is still some overlap as well as missed pixels
within the region.

The main opponent of the outlined genetic program throughout its creation and subse-
quent testing was time complexity. Image sizes usually range in hundreds to thousands of
pixels on a side, and during each epoch each pixel must be checked for hundreds of newly
generated population members.

For this reason many quantifiers were calculated as the children were created to save com-
putation cycles. For instance during the creation of each population member, whether child
or initial member, after each disk was added to the population member the disk was drawn
on the image for comparison. Unfortunately this restricted the ways in which creatures
could be mutated, as disks could not be removed or changed, because it may affect any
number of vital statistics present in the calculation of the cost function.

8

Figure 7: Cost vs. Epochs for Ellipsoid region

5 Conclusion

The application of genetic techniques to the problem of disk packing presents an interest-
ing problem. While many techniques can be used for well defined boundary areas, random,
complex, or poorly defined boundary areas may require a more general approach, such as
the one presented in this paper. The use of genetic algorithms makes the complexity of
solution method greatly reduced, but also results in imperfect solutions. Fortunately for
estimation purposes, a certain about of leniency is allowed.

The use of a set of disks to define a population member may be extensible to other ar-
eas, where binary or tree representations of population members may not be appropriate.
As with many genetic techniques, this one was highly sensitive to a myriad of different
parameters within the structure of the algorithm, including the population size, the size of
population members, the computation of the cost of the members, and the rate of mutation.
For any given area to be analyzed specific tuning of the parameters may be necessary.

The results of other runs were similar to the example above. While these covers are cer-
tainly far from perfect they may suit the need for computation of Hausdorff dimension.
This soft packing method gives us a fair estimation of what aδ− cover may look like for a
given fractal. Further work will need to be completed to determine whether theδ − covers
created by the algorithm are viable for fractal dimension calculation.

9

Figure 8: Covered Ellipsoid region

References

[1] Benoit B. Bandelbrot,The fractal geometry of nature, W. H. Freeman, 1982.

[2] Kenneth Falconer,Fractal geometry: Mathematical foundations and applications,
John Wiley and Sons, West Sussex, England, 1990.

[3] John H. Holland,Adaptation in natural and artificial systems, University of Michigan
Press, Anna Arbor, MI, 1975.

[4] Eric W. Weisstein,Circle packing, http://mathworld.wolfram.com/CirclePacking.html.

10

