
Finding analytic solutions to equations using
genetic programming and predator-prey dynamics

Daniel Rausch and Dr. Jeff McGough
Department of Mathematics and Computer Science

South Dakota School of Mines and Technology
Rapid City, SD 57701

Dan.Rausch@gmail.com
Jeff.McGough@sdsmt.edu

March 16, 2004

Abstract

We present a genetic programming approach to finding analytic solutions to nonlinear al-
gebraic equations. Having solved the general quadratic equation by evolving the quadratic
formula, we will show results from that equation, as well as other algebraic equations con-
taining exponential or logarithmic operators. Each potential solution equation is expressed
as an S-expression consisting of operators, identifiers, and constants. This lends itself to
storage in binary tree form. Reproduction involves crossover and mutation. Crossover is
done by swapping a randomly selected subtree from both parents, and mutation involves
changing operators, identifiers, or constants.

In any genetic programming approach, a key issue is the selection of an effective fitness
function. A good fitness function increases the convergence to a solution. However, fitness
functions often utilize some prior knowledge of the solution. Many genetic programming
examples will explicitly define a fitness function in this manner, but for our approach the
fitness of a potential solution equation is determined endogenously through the predator-
prey model.

In each epoch, our potential solution equations interact with the algebraic equations. The
solution equation will generate a value based on the parameters of the algebraic equation.
By plugging this potential root back into the algebraic equation, the error is determined.

The higher the residual value is, the more it hurts the solution equation. If the residual
value exceeds a certain threshold, that solution equation is killed off. The more successful
a solution equation is, the more offspring it is able to produce.

There are many different areas that affect the convergence of this system. After repro-
duction, part of the equation may become useless (i.e. dividing by one, subtracting zero,
etc), so we looked into the effects of pruning those parts from the equations have on the
overall convergence. The tuning of the threshold value and other parameters will affect the
system. Also, the set of operators available to the system will change the dynamics of the
convergence.

2

1 Introduction

This paper concerns itself with the general solution of algebraic equations using an ap-
proach known as Genetic Programming. Genetic Programming (GP) is a popular form of
evolutionary computing. There are several similar approaches such as genetic algorithms,
evolutionary strategies, which with genetic programming, uses the principles and ideas
from biological evolution to guide the machine to a desired solution. The differences in the
approaches lie more in the details than in the overall view, that of imitating nature; and com-
bined with simulated annealing and other biologically motivated algorithms have enjoyed
recent popularity. Genetic programming specifically has seen a whole host of successes in
solving very complicated problems. Koza [2] has many examples including circuit design,
program design, symbolic regression, pattern recognition, and robotic control.

We normally have some fixed problem to solve or to optimize. The solution (or optimizer)
lives in some set of potential solutions. We must search it out. In real examples, the
search space is much too large to attempt a brute force search, so some method must be
utilized to reduce the number of examined solutions. In analogy to nature, we see our
potential solution as an individual in some collection or population of potential solutions.
The individuals who are stronger, meaning higher ranked according to some cost/fitness
function, will be used to determine the makeup of the next collection of potential solutions.
By employing analogs of sexual reproduction (recombination) and mutation a newer and
hopefully more fit population will arise each generation. After a number of generations,
the most fit member then becomes a candidate for the solution to the problem at hand. [1]

Of course, the difficulty is in the details. Representing the potential solution in some man-
ner that accommodates recombination and mutation is the first step. Identifying a fitness
(cost) function and details of reproduction is a second, possibly more difficult, step. Then,
tuning the parameters so that the population has members which solve the problem can be
an art in itself. Overall, a great deal of tuning of parameters and cost function components
must occur for GP to be successful.

Our goal is two fold here. First, we intend to solve nonlinear algebraic equations. It is
a great problem to test out the effectiveness of GP. Second, we intend to do so without
significant effort in expert systems. In other words, we would like to determine if we
can produce a system capable of solving mathematical problems without a great deal of
heuristics and expertise. In fact, can we solve these mathematical problems with no built
in expertise at all? Goal one is then to produce a system that can solve a quadratic equation
(thus we start with a well understood problem). We are not looking for a solution to a single
equation - a root finder would suffice, but find the formula for the general solution. This
can be solved by a computer algebra system like Maple, but these require significant rules
sets (and apriori knowledge).

GP was selected since it seems to fit both goals. One problem immediately pops up. Don’t
we essentially code in significant expertise when we write the cost function? Maybe so.

1

To address this, we have the cost function implicitly defined and evolve so that the system
creates it. Thus it builds the expertise. This is the motivation for the predator-prey co-
evolutionary approach. It allows the system to figure out the cost function. It also opens
the door to much slower convergence or no convergence at all (meaning convergence to a
desired solution).

The basic idea is that the equations to be solved are considered to be “prey” and the formu-
las to solve then are considered predators. The process of a formula solving an equation is
likened to a predator consuming a prey. The more successful a predator is the more prey it
will eat. This equates to solving more equations. Prey are generated but the predators must
evolve.

We had hoped to find that the GP produced a formula which was algebraically equivalent to
the quadratic formula. This was not the case. We generated approximations which for long
enough runtimes were reasonable accurate. Some speculation early on focused on Taylor
approximations as being the expected result, which was not the case. The approximations
have more in common with continued fractions as can be seen in the last section.

Section 2 presents the details on how we represent the objects in the machine and defines
the basic problem. Section 3 presents the extension of the fitness function into the co-
evolutionary approach. Section 4 give the details on how new generations are formed and
how certain parameters are selected. Section 5 describes the results and what the results
mean.

2 Data Storage

In order to simplify the arithmetic with all the calculations, we limited ourselves to real-
valued variables and real-valued arithmetic. By construction, our polynomials are guaran-
teed to have real-valued solutions. Therefore, by not dealing with complex numbers, we
avoid the issue of the multi-valued square-root operation.

2.1 Predators

The first step in storing the equations is to define a grammar to describe them. An S-
expression grammar is used, not unlike those used in LISP. [2] A valid S-expression with
our grammar is an identifier, a constant, or an operation, each enclosed in parenthesis. An
identifier is a single letter. A constant is a positive or negative floating-point number. An
operation consists of an operand followed by two expressions. An expression is an iden-
tifier, a constant, or another operation. The operands consist of, at minimum, the+ − ∗/
binary operators, which correspond to addition, subtraction, multiplication, and division,

2

Figure 1: Equation in tree format

respectively. Other operators have been added, such as square-root and the square op-
erators. In this case, the operator used for square root is &, and the square function is
represented by∧.

This grammar lends itself to storage in binary tree form. Each leaf node correspond to either
an identifier or a constant, and the other nodes are binary operators. When evaluating the
tree, an array storing the numerical values of the identifiers is passed in. Any calculations
done using an identifier will use those values. The evaluation function uses a depth-first
algorithm to calculate the value of the equation. If a node is a constant or an identifier,
the value is returned. However, if the node is an operation, it recursively evaluates the left
subtree and the right subtree, and then applies the operand to those values.

Consider the following S-expression

(∗ (− 0.051417 0.464698) A)

This equation is stored in tree form as shown in Figure 1. Given the conditionA =
−1.236548, this equation evaluates, in infix notation, to

(0.051417− 0.464698) ∗ (−1.236548) = 0.511042

This is an example of what the real quadratic formula would look like using the grammar
previously defined.

(/ (+(− 0 B)(& (− (∗ B B) (∗ (∗ 4 A) C)))) (∗ 2 A))

In standard notation, this evaluates to

−B +
√

B2 − 4AC

2A

The structure used to store the information for each predator consists of a double precision
value to store the fitness and a pointer to the root node of the S-expression tree.

3

typedef struct
{

Node * sexpr; /* pointer to root node of equation tree */
double hitpoints; /* stores remaining hitpoints */

} Predator;

The Node structure used to store the S-expression was defined as:

/* BinaryOperator structure */
typedef struct {

char op;
} BinaryOperator;

/* Terminal structure */
typedef struct {

enum TermType type;
union {

char *Identifier;
double Constant;

} x;
} Terminal;

/* Function structure */
typedef struct
{

double power;
} PowFunction;

struct NodeStruct {
enum NodeType type;
int number; /* the node’s number. */
int largestchild;

/* the node’s largest child’s number.
* Only meaningful at the root.
*/

union {
BinaryOperator BinOp;
Terminal Term;
PowFunction Pow;

} x;
struct NodeStruct* parent; /* Pointer to parent */
struct NodeStruct* operandL; /* Left Operand */
struct NodeStruct* operandR; /* Right Operand */

};
typedef struct NodeStruct Node;

4

2.2 Prey

The prey population consists of the algebraic equations that our solution equations, the
predators, are trying to solve. For this population, the coefficients and possibly some roots
are stored. Each set of algebraic equations has a limited domain of coefficients in which
solutions can be found. For example, linear equations are of the formAx + B, where A
and B are floating point values. Clearly, this has the solutionx = −B/A. This solution
breaks down whenA = 0. Likewise, quadratic equations, which were a major part of this
study, are even more complicated, for not all quadratic equations have solutions that live in
<. So those equations were created by randomly selecting two real-valued roots (α andβ),
and then calculatingB1 andC1 coefficients by multiplying out the factors. This gives an
equation of the form

(x− α)(x− β) = x2 + B1x + C1

Then by multiplying the entire equation by some other random number A, an equation with
three coefficients and two real roots has been found.

Ax2 + Bx + C

These equations are not static throughout the entire run of the system. If during an evalu-
ation a potential solution equation solves within someε > 0 value, that algebraic equation
is considered “solved”, and a new equation is created to take its place. That way, gradually
the set of algebraic equations will get more and more challenging. It is more likely that
the simplest prey relative to the predators will be the first to be solved, so by removing
them from the population and replacing them by a new algebraic equation, the overall set
of equations to be solved will have increased difficulty. This helps drive potential solu-
tions toward better approximations and prevents the solutions from solving a static set. The
quadratic equations were stored in the following data structure.

typedef struct
{

double root1; /* roots of this quadratic */
double root2;
double A; /* corresponding coefficients */
double B;
double C;
int solved; /* flag show if equation was solved */

} quadraticPrey;

3 Fitness

When using a genetic program to solve a problem, one of the most important issues to
address is determining the fitness of the individuals. An ideal fitness function not only

5

guides the system in the correct direction, but also utilizes known information about the
problem to speed up convergence while not incurring much computation. Because we
wanted to restrict the artificial addition of new information as much as possible, the primary
fitness function utilized contains very little information outside that within the system.
Though this slowed down convergence, this project focused more on limiting information
rather than optimal convergence.

When it comes to determining the quality of a potential solution equation, a simple scoring
method is used. At the beginning of each epoch, each solution equation is allotted a certain
number of hit-points. Then the equation is evaluated against a certain number of randomly
chosen sets of coefficients. During each of these competitions, a metric is taken of how well
the equation did against that set of values. If the equation accurately calculated a root, few
hit-points are deducted and that set of coefficients is removed from the population. If the
equation did poorly, many hit-points will be subtracted away. If at any point during these
competitions the equations runs out of hit-points, it is considered dead, and not allowed
to reproduce. If an evaluation causes an error, by either trying to divide by zero or taking
a negative square-root, the equation is also marked as dead. This method of determining
fitness was used because it allowed simple, fast comparison between equations to rank them
after each epoch. Also, it didn’t require any knowledge of the actual solution formulas to
determine a fitness for our potential solution equations.

The success of an evaluation can be determined in two different manners. The potential root
can be compared to the actual root for the equation, and this difference can be subtracted
from the hit-points that the solution equation has. The other method is to plug the value
back into the equation it is using to determine the root, and see how close the output is
to zero. Both options have their advantages and disadvantages. In the first case, if the
actual roots are known, the algorithm tends to converge quicker. However, not all types of
equations have simple root methods, and if an equation is known to determine the root, that
often defeats the point of using a genetic algorithm to find a root equation. In this case,
comparing to know roots adds information specific to the given set of algebraic equations
in the system. This technique for determining fitness was only used as a comparison to the
the second method.

To demonstrate the difference between the two techniques, consider the following quadratic.

x2 − 3x + 2 = 0 (1)

This equation has solutions atx = 1 andx = 2. In this example,A = 1, B = −3, and
C = 2. Now consider this potential solution equation.

4A +
B

C
(2)

Equation (2) estimates the root to Equation (1) to be

4(1) +
−3

2
= 2.5 (3)

6

To calculate fitness with the first method, this potential root is compared to the actual roots
for this equation, and the actual error is determined.

|1− 2.5| = | − 1.5| = 1.5

|2− 2.5| = | − 0.5| = 0.5
(4)

Taking the minimum error value, that value would then be subtracted from the hit points of
Equation (2).

Using the second method of determining fitness, this value is plugged back into the original
quadratic (Equation (1)).

(2.5)2 − 3(2.5) + 2 = 0.75 (5)

The absolute value of Equation (5) would then be subtracted from the hit points of the
potential solution equation.

By using the second method, much of the information of the problem is removed. All
different sets of equations can be solved using the same fitness function. Unfortunately, this
fitness function especially struggles with equations that have multiple roots. For example,
many quadratics have two roots, so the potential solution equation can map to either root
with a given input and score equally well. This leads to contention when one potential
equation is converging to the larger roots, and another equation is going toward the smaller
roots. If these two potential equations attempt to recombine to create a child, there is
high probability that the child won’t be very successful. In fact, there were several runs
using this method of fitness on quadratics that converged to an average of the positive and
negative solutions to the quadratic equation.

4 Recombination and Mutation

4.1 Recombination

Recombination is rather straight-forward considering the structure of the solution equa-
tions. Before recombination begins, the surviving equations are sorted based upon their
remaining hit-points. Then the equations are separated into two separate groups, highest
in one group, and the lowest in another. To create a child, two random parents are chosen,
with one parent from the high group and the low group being chosen. Once the two parents
are selected, one is randomly chosen to be the primary parent. This parent is completely
copied. Then a random node is selected as the crossover point. The other parent becomes
the secondary parent. A random node is selected from this second parent, and the subtree
from that node of the second parent is copied. Once a copy of this subtree has been made,
it replaces the subtree chosen from the first tree. See Figure 2 for an example of crossover.

7

Figure 2: Example of crossover

During the tests, various cutoffs were experimented with to determine the high level and
low level parents. If the cutoff level was too small, for example only the top5% were
considered ’high’, then the information being passed on after each generation was too re-
stricted and convergence was hindered. Most of the successful runs occurred with10% or
higher. Another issue that was considered was allowing the high level equations to survive
the epoch. Runs were taken where the high level equations were destroyed, and other runs
were done with them surviving. The success or failure of this variable was closely coupled
with the mutation rate. Survival of high level parents worked best with high mutation rate,
and destroying all the parents converged best with low mutation rate.

4.2 Mutation

There are three different states a node can be. It is either an operator, a constant, or a
variable. If that node is selected to be mutated, each state has its own options. For an
operator node, the operator is randomly switched to one of the other operators. For the
constant node, the value of the constant can be changed to a new random constant, or the
constant can be switched to a variable. Likewise, the variable can be switched to a different
variable, or changed to a random constant value.

Mutation rate is a key issue in developing good convergence. Often, only a small percentage
of the initial population of equations survives the first few epochs, which limits the amount

8

of genetic material to choose from. So a high mutation rate is essential in order to find
new information to make the potential solution equations more accurate. Traditionally,
some of the literature suggests a mutation rate of1% − 2%. [3] When using a mutation
rate of this level, it was vital that the parents didn’t survive the epoch. In other words,
all the solution equations were new for each epoch. Using this rate, the system was very
susceptible local maximums. An initial fitness value that was reasonably high would be
reached quite quickly, often within 20-50 epochs. However, once this value was reached,
the system would remain near this level, fluctuating slightly above or below, for thousands
of epochs. This is a classic example of premature convergence. [2] To help fix this issue, a
much higher mutation rate was tried. Rates of up to20% were used, and although the higher
rates helped progress, once the rate got too high, the fitness level fluctuated too violently
to be useful. This is especially true when all the parents were killed after each epoch. In
that case, the fitness of the system wouldn’t converge at all. However, if the top portion
of the parents were allowed to survive, the system showed convergence. Best convergence
was shown with mutation rate of10% and allowing the top10% of the parent population
to survive each epoch [2]. This consistently outperformed more traditional mutation rates
coupled with no parent survival.

5 Results

In most runs, this system finds solution equations with high fitness levels very quickly,
often within 100 epochs. However, these high fitness levels are often misleading, because
each equation only competes against a small fraction of the entire search space. So the
high fitness values are due to blind luck as much as the actual accuracy of the equation.
As the epochs continue, the fitness levels of the top equations may not change much, but
they are tested against an increasingly large number of algebraic equations with varying
coefficients, the potential solution equations increase in overall accuracy.

Because of the issues with multiple roots, the first method works significantly better in the
case of the quadratic. Solution equations were evolved with relative error less than or equal
to 10−5 over limited ranges of the quadratic variables, such as{A, B, C|A, B, C ≤ 10}.
When using the second method, the error bound was several orders of magnitude higher,
often between10−1 and10−2.

5.1 Example Solutions

During a run of 5000 epochs, the Equation (6) below ended up having the highest fitness
value. Its relative error was10−5, and the graph of this function is shown in Figure 3(b),
along with the graph of the quadratic equation. SettingA = 1 allows plotting in three
dimensions.

9

Figure 3: (a) Quadratic Equation mapped in 3 space (a=1). (b) Equation (6) (10−5 relative
error)

Figure 4: (a) Equation (7) (10−3 relative error). (b) Equation (8) (10−3 relative error)

10

((c− 0.249947 (b(38.01378045 + (1.113362 (19.375409− c−1)−1+

(96.62821190 + 0.06372656122 b)2.0)0.5)−2.0 + b)2.0)2.0)0.25 − 0.5000441566 b
(6)

Some of the solutions evolved into very large equations, such as the following:

((c((c((c((c(1.025417525 b2+

c(c
(b−348.4329700 (1425.455203+(c+93.29497699)0.5)−2.0)2.0+1−2 c

− 1)−1 − c)−0.5 + b)2.0+

1)−0.5 + b)2.0 + 0.003249486066 b2.0)−0.5 + b)2.0+

0.002297505575 b)−0.5 + b)2.0 + (c((c((c(0.02541752543 b(−604.1633377 + b)+

((c
(b−1339.198329 (3.911086+c)−0.5(1425.455203+(c+60.23093608)0.5)−2.0)2.0+(1+c)0.5−c

)2.0+

c)2.0 − c)−0.5 + b)2.0 + 1)−0.5 + b)2.0+

0.05576893058 (−0.3806695978+b)2.0(2.703704−21.649633 b)−0.5

c
)−0.5 + 13.729620 + c)−1)0.5

(7)

This equation, whereA = 1, plots as Figure 4.

((b + c((b + c((b + c((b + c((b + c((b + c((b + c((b + c((b + 1.414213562 c0.5)2.0+

(b + ((c(17.149483 + c)0.5 + 1)0.5 + c)0.5)2.0)−0.5)2.0 + c−1)−0.5)2.0+

1.249643667)−0.5)2.0 + 0.01589486515)−0.5)2.0 + c−1)−0.5)2.0 + c−1)−0.5)2.0+

(2 + (1 + c)0.5)0.5)−0.5)2.0 + (21.131135 + c)−1)−0.5)2.0)0.5 (8)

This equation plots as Figure 4(b).

5.2 Quadratic Formula

With the previous two equations demonstrating the results of a typical run, the question
that needs to be addressed is, ”Where is the quadratic formula?” There are two major issues
that hinder the appearance of the quadratic formula. First, the quadratic formula contains
a square root. Any invalid operation, such as dividing by zero or taking the square root
of a negative number, set the fitness of the equation to zero, so that equation will have no
opportunity to reproduce. Because of this, any equations that may have the square root
with a subtraction inside, like the quadratic equation requires, are prime candidates to be
eliminated by an invalid operation.

11

The second problem involves the various pieces that make up the quadratic formula. By
itself, −b

2
, and to a lesser extent

√
b2 − 4ac, does not provide a very close approximation to

the quadratic formula. Tests were run where the initial random population was augmented
with several copies of the pieces that comprise the quadratic equation. With these artificial
initial conditions, results were mixed. Some runs successfully found the quadratic equation
within 20 epochs. Other runs went for hundreds and thousands of epochs, with no sight of
the quadratic. An analysis of the population after less than 100 epochs of an unsuccessful
run revealed minimal data remaining from the pieces inserted into the population.

As was mentioned before, it seems that the during the first epochs, it is better to be lucky
than good. The success or failure of an equation relies heavily on the set of coefficients
that it must compete against. Because of the way reproduction is set up in this system,
the data from the initially successful equations is disseminated throughout the population
rather quickly, which forces out much of the other genetic data. And with the dominant
factor being crossover rather than mutation in reproduction, it is difficult for the system to
recover that information.

5.3 Continued Fractions

Even though this system didn’t converge to the solution that we were hoping, it did con-
verge to a solution. Consider the following example:

Ax2 + Bx + C = 0

Ax2 = −Bx− C
(9)

Divide through byAx.

x =
−B

A
− C

Ax
(10)

Let A = 1.

x = −B − C

x
(11)

Substitute the right side for x on the right side.

x = −B −
C

−B − C
x

(12)

Continue these substitutions.

x = −B −
C

−B −
C

−B −
C

−B − · · ·

(13)

12

This is an example of the solutionx expressed as a continued fraction. This method is
often used to represent irrational numbers in terms of integers. In this case, if the sequence
converges, the solution approximates a root based on the coefficients. Because all the equa-
tions in this system are guaranteed roots, this equation does represent a root approximation
based on the coefficients of the equation. Runs with a variety of parameter settings con-
verged to solutions of this form. For example, Equation (8) has several sections that are
raised to negative powers. If these were to be written as fractions, it would be very similar
to (13). This is also the case with Equation (7) as well. Many of the solutions this system
converged toward mimicked the form of the continued fraction representation of the solu-
tion. In some ways, this is an even better solution to the actual quadratic formula, because
solutions of this form can be expressed with only the four major operations of addition,
subtraction, multiplication, and division. There is no need to complicate things with square
roots and squaring operations.

6 Conclusion

GP is a very versatile tool for problem solving and automated design. We have been able
to generate a solution to a general quadratic equation using GP. We have also succeeded
in having the system discover the solution rather than have an algorithm for discovery
provided. It generated forms which were unexpected and very interesting.

Future directions for this project include casting a wider net to attack higher order equations
or other nonlinearities. These include equations involving exponentials and logarithms.
One would expect that having a GP attack these kinds of equations would lead to solutions
involving Taylor expansions, but as this test showed, we may be surprised. Another pos-
sible addition is converting to complex arithmetic. This may enhance convergence, relax
domain restrictions, and open the possibility of closed form solutions.

We are also interested in changing the dynamics of the predator/prey model. Right now,
we are only evolving the predator population, but the prey could be set to evolve as well.
Also, both the predator and prey population sizes are fixed. Allowing for dynamic pop-
ulation sizes may cause some interesting behavior between the two populations. Another
possibility is to parallelize the code and create an island model. This would create rela-
tively isolated populations on each of the nodes, allowing members of each population to
occasionally jump to a new island. Adding this separation may help prevent the premature
convergence that that we fought with in our system.

Work on this project was greatly aided by Erin Nichols, who graciously allowed us to use
her S-expression parsing code, binary tree manipulations functions, and other code and
information from previous projects. Also, we found Melanie Mitchell’s book invaluable as
an introduction on Genetic Algorithms [3].

13

References

[1] David E. Goldberg,Genetic Algorithms in Search, Optimization, & Machine Learning,
Addison-Wesley Publishing Company, Inc., Reading, MA, 1989.

[2] John Koza,Genetic Programming II, MIT Press, Cambridge, MA, 1994.

[3] Melanie Mitchell,An Introduction to Genetic Algorithms, MIT Press, Cambridge, MA,
1999.

14

