Teaching an Introductory Computer Science
Sequence with Python

Bradley N. Miller David L. Ranum
Department of Computer Science Department of Computer Science
Luther College Luther College
Decorah, lowa 52101 Decorah, lowa 52101
bmiller@Iluther.edu ranum@luther.edu
Abstract

Learning computer science requires deliberate and incremental exposure to the fundamen-
tal ideas of the discipline. This paper will describe our initial experience teaching an in-
troductory computer science sequence using the programming language Python. We will
present our position and then use specific examples to show how Python can provide an
exceptional environment for teaching computer science.

1 Introduction

We (the authors, David and Brad) like to ski and we are pretty good at it too. But that
level of competence only comes with practice, lots and lots of practice. The designers of
ski runs help with that practice in that they code the runs by ability level. Green is for
beginner, blue for intermediate, and black runs are for those skiers with advanced skills.
This does not however suggest that green runs are void of the important elements that skiers
need to become better. Beginning runs still require turns, speed control, and the ability to
start and stop.

One of the most unsettling things that we observe on the mountain occurs when a beginning
skier ventures out on the blue or black runs before they are ready. It can be an extremely
frustrating experience watching them as they slowly attempt to pick their way down the
hill, often falling, sometimes crying. The bottom line is that if you start out on the black
runs, you are likely to get frustrated and give up. You will often fail before you get a chance
to succeed

Computer science deals with people who have problems to solve and with algorithms, the
solutions to these problems [4]. Computer science was never intended to simply be the
study of programming. To be a computer scientist means first and foremost that you are
a problem solver, capable of constructing algorithms either from scratch or by applying
patterns from past experience.

Learning computer science is not unlike learning to ski in that the only way to be successful
is through deliberate and incremental exposure to the fundamental ideas of the discipline.
A beginning computer scientist needs practice so that there is a thorough understanding
before continuing on to the more complex parts of the curriculum. In addition, a beginner
needs to be given the opportunity to be successful and gain confidence.

As students progress through the introductory computer science sequence, we want them to
focus on aspects of problem solving, algorithm development, and algorithm understanding.
Unfortunately, many modern programming languages require that students jump into more
advanced programming concepts at a point that is too soon in their development. This
sets them up for possible failure, not because of the computer science but because of the
language vehicle being used.

We believe that Python is an exceptional language for teaching introductory computer sci-
ence students. We are not alone in this belief [10, 11, 8, 1]. Nor are we alone in our belief
that there are many shortcomings to teaching Java [7, 5, 3]. Python has many advantages
that can help to minimize the failure scenario noted above. In what follows, we will explore
some of these advantages.

2 Introduction to computer science

Our typical computer science student enters the introductory course sequence with very
little previous experience. Few have done any programming. In general, they are very
good students who have expressed a desire to learn about computer science. Our goals
for the first course in computer science are to introduce students to basic problem solving
approaches. Programming is presented as a notational means for expressing solutions to
these problems.

As students progress from the first course into the second, we begin to focus on classic
algorithms and data structures that recur in the solution to many problems. Even though
these ideas are more advanced, we still assume that the students are beginners. They may
be struggling with some of the ideas and skills from their first course and yet they are ready

to further explore the discipline. Many students discover at this point that there is much
more to computer science than just writing programs. Data structures and algorithms can
be studied and understood at a level that is independent of writing code.

Our goals for the second course are similar to the first. We want to continue the exposure to
algorithms, data structures, and problem solving. We want students to understand how to
build analysis frameworks to compare and contrast solutions. Most importantly, instead of
learning a new programming language or a new software development technique, we want
students to continue to learn computer science.

Finally, although it is not the focus of this paper it should be noted that we utilize Java in our
third semester introductory course. We believe that Java is an excellent programming lan-
guage for industrial strength software development and in this course we emphasize many
modern programming practices that students need to understand. The topics include graph-
ical user interfaces, model/view/controller architecture, threading, XML, Java Interfaces,
version control systems, tools, and documentation. At this point in their study, students are
prepared to learn these complex ideas.

2.1 Python Support

As we noted above, deliberate, incremental exposure to computer science provides a good
framework for students who are learning difficult concepts for the first time. It is a good
teaching method if the tools are in place to support it. Python provides this support.

We begin with a very imperative style, focusing our attention on the basic ideas of algorithm
construction. The students quickly gain comfort and confidence with basic programming
constructs such as iteration and selection. The ability to provide many small projects with
no additional overhead means that there is time for additional practice. This can quickly

move to writing function definitions which will be identical in syntax and use to the method
definitions to come later.

In Python, the first program is simply an interactive session:

>>>print "Hello .Python.World”
Hello Python World

It is obvious to even the most beginning student what has happened. A single, imperative,
algorithmic step, printing a sequence of characters. The result is exactly what you would
expect. This sets the stage for the entire introductory sequence. We never want to present a
notation without being in a position to understand how and why it is being used.

The use of a language such as Java requires that students be exposed to a program such as:

public class Hello{
public static void main(String[] args{
System.out. println ("HellaJava.World”); }

at the start of their study. Unfortunately, a number of the ideas represented by the syntax
shown cannot be understood until well into their study. Our goal is to remove the language
as a possible bottleneck in the learning process.

In addition to this quick startup, Python provides a consistency that allows a natural transi-

tion to the object oriented paradigm. Since everything in Python is an object, the concept

of reference is presented on the first day. The assignment statememnt, means that x is

a reference to the object 5 in the same way that any other piece of data ever used will refer
to its value. Students never need to change their basic conceptual model.

The value of this consistency cannot be overlooked as we strive to present difficult computer
science. Since Python is inherently dynamic, polymorphic behavior is simply the norm. It
is not a new or strange concept and it does not require any special syntactic elements.
Instead it is simply the way that an object ought to behave. This simplicity allows students,
as they begin to write their own classes, to focus much more on the design of the data and
the relationships that exist in the problem being solved.

The interactive nature of the Python environment as well as the ample supply of easy to use
programming development tools provide an additional benefit for teaching and learning in
the introductory sequence. The Python shell has an interactive prompt where any Python
construct, no matter how complex, can be evaluated. This also means that program testing
and debugging can be done directly in the shell environment. Variables can be inspected
by simply evaluating them. This again allows a very incremental approach to program
development. Students can easily know what works and move on to the next, more complex
part of the problem.

As another example, consider the typical second program, one that converts temperatures
from Fahrenheit to centigrade. In Python, we can simply create a small program as shown
below and then invoke it interactively from the Python shell prompt.

def main ():
degreesf = input(”"Enterthe_temperaturein_fahrenheit.”)
degreesc = (degreesf 32) x 5.0/9.0
print "The_equivalenttemperatureis”,degreesc ,”"degreeL”

>>> main ()
Please enter a temperaturen fahrenheit 98.6
The equivalent temperaturds 37.0 degrees C

In Java, we are immediately confronted with the issues of I/O classes and exceptions. The
language bottleneck with additional syntactic items that cannot be immediately understood
diverts the student’s attention from the main task. We should note that there are solutions
to this particular Java problem [6].

Listing 1: Java version of temperature converter

import java.io .x;

public class Converter {
public static void main (String[] args){
try {
InputStreamReader isr mew InputStreamReader (System.in
BufferedReader br =new BufferedReader(isr);

~—~

System.out. print(”Enterthe_temperaturein_.fahrenheit”);
double degreesf = Double.parseDouble(br.readLine ());
double degreesc = (degreesf 32) x 5.0/9.0
System.out. println("Theequivalent.temperatureis.”

+ degreesc + ’degreesC”

}

catch (IOException e){ //handle exception here

}

3 Case Studies

In a second course in computer science there are three broad areas in which we want the
students to gain experience. In decreasing order of importance these three areas are:

1. Students should get an intuitive feel for abstract data types by working with them
directly.

2. Students should get a conceptual understanding of a wide range of algorithms.

3. Students should begin to get accustomed to important programming language fea-
tures so that they can easily move into another programming language.

In this section we will look at some common programs written in an introductory data
structures course. We will compare the programs written in Python, Java, and Pseudocode.
As we look at the various example programs we will discuss how each either helps or
hinders the three goals outlined above.

3.1 Insertion Sort

We will begin with the simple insertion sort algorithm. Shown below is the pseudocode
from [2].

1: Insertion-Sort(A)

2: for j < 2tolength[A] do
key < Alj]
1—7—1
while i > 0 andA[i] > key do

Ali + 1] — Al

1—1—1

Ali + 1] < key

w

© N o gk

In listing 2 we show the Python code for insertion sort. Notice that it is the same number

of statements as the pseudocode. The few differences in the pseudocode and the Python
code are because the pseudocode assumes that arrays are indexed starting at one, whereas
Python indexes lists beginning with zero. Like the pseudocode Python uses indentation to
denote block structure in a program. While experienced programmers who are used to the
curly braces of C, C++, and Java may find this a step backward, novice programmers find
indentation to be quite natural and we have found that it enforces a more readable coding
style than students typically adopt when they can use braces.

Because Python is dynamically typed there is no need for variable declarations. The code,
as written, will work for many different Python data types. The following Python session
illustrates loading the insertion sort code from a file and trying it out on a list of integers,
strings, and floats.

cray :MICS2005 python —i insertion.py
>> A= [9, 4, 2, 10, 7, 22, 1]
>>> insertionSort (A)

Listing 2: Insertion Sort in Python

def insertionSort(A):
for j in range(1,len(A)):

key = A[j]
i =
while i>0 and A[i —1]>key:
A[i]=Ai —1]
i = i-1
Ali]=key
>>> A
[1, 2, 4, 7, 9, 10, 22]
>>> B = ['dog’, 'cat’, 'ape’, 'eel’]
>>> insertionSort (B)
>>> B
['ape’, 'cat’, 'dog’, 'eel’]

>>> C = [3.14, 2.78, 9.80, 3.8]
>>> insertionSort (C)

>>> C

[2.78, 3.14, 3.8, 9.8]

>>>

In listing 3 we show the code required to create a complete Java program for insertion sort.
This code is taken from [9], a popular data structures and algorithms book for Java.

Listing 3: Java version of Insertion Sort

public final class Sort {
public static void insertionSort(Comparable [] a X
int j;
for(int p = 1; p< a.length; p++){
Comparable tmp = a[p];
for(j = p; j > 0 & tmp.compareTo(a[j— 1]) < 0; j—-)
a[j]l =alj—-11
al[j] = ;

]
tm

©

¥
}
public static void main(String [] args){
Integer [] a =new Integer[NUMITEMS];
for(int i = 0; i < a.length; i++)
al[i] = new Integer(i);
for (theSeed = 0; theSeed 20; theSeed++){
Random.permute(a);
Sort.insertionSort(a);

Notice that the basic elements of insertion sort are still quite similar. However, there is
so much more going on that it is difficult for a novice programmer to know what to focus
on. The fact that the algorithm must be declapedblic static void inside a class

adds the complexity of creating a new class just to contain this algorithm. The braces and
variable declarations add length to the program. A simple comparison operator must be
replaced with a method call. Finally, to make the algorithm sort multiple data types we
must employ a Java Interface called Comparable. Interfaces, although extremely powerful,
are also extremely complex. So what is a beginning computer science student going to
focus on first?

Much of the complexity in the Java example can be traced back to the use of the Compara-
ble interface. The Comparable interface is specified as follows:

Listing 4. Comparable Interface

public interface Comparablg
public int compareTo(Object 0)
}

This means that any Java class that implements the Comparable interface must implement a
compareTo method. The Java documentation tells us exactly wbatpareTo should

do: Compares this object with the specified object for order. Returns a negative integer,
zero, or a positive integer as this object is less than, equal to, or greater than the specified
object. The built in classes in Java all implement this interface so you do not need to
explicitly implementcompareTo if you are sorting arrays of Strings, Floats, Doubles, or
Integers. Unfortunately, if that is the case then you cannot use the method in listing 3 to
sort arrays of int, float, or double.

As stated earlier, in Python all variables refer to objects so we do not have the distinction
between Integer and int. How does Python handle sorting arbitrary objects? Suppose that
we want to use our Python insertion sort function to sort a list of students according to their
GPA. We must first define a class to represent each student.

The simplest class definition for a student is shown in listing 5.

Listing 5: Class Definition for Student

class student:

def __init__(self ,lname,fname,hgpa):
self.fname = fname
self.Ilname = Iname

self.gpa = gpa

Once we have defined this class we can test it by interactively creating some instances. We
can even put these instances into a list and try to sort them.

student ('miller’,’brad’ ,4.0)

>>> b

>>> d = student(’'ranum’, ’'david’', 3.8)
>>> g = student(’'gates’, 'bill’, 3.2)
>>> A = [d,g,b]

>>> A

[<student.student instance at 0x70080
<student.student instance at 0x704418
<student.student instance at 0x671¥)0
>>> insertionSort (A)

>>> A

[<student.student instance at 0x671¥0
<student.student instance at 0x70080
<student.student instance at 0x7041J8

Notice that even with this basic class definition, Python provides us with a default behavior
that does not create an error. In listing 6 we extend the definition of Student with two
additional methods. The_repr_ method and the cmp._ method provide the student class
with a friendly string representation and a comparison. Java programmers should think of
these two methods as tostring and compareTo.

Listing 6: A student class that can be sorted by GPA

class student:

def __init__(self ,Iname,h fname,h gpa):
self.fname = fname
self.Ilname = Iname

self.gpa = gpa

def __repr__(self):
return (self.fname + .” + self.Ilname + ":.”
+ str(self.gpa)

def __cmp__(self ,other):
if self.gpa< other.gpa:

return -1

elif self.gpa == other.gpa:
return O

else:
return 1

The following Python session demonstrates how easy it is to create some class instances,
add them to a list and then sort the list. Notice that in this session we now get a much more
helpful view of the instances, because python is using thepr__ method to display them.

student ('miller’,’brad’ ,4.0)

>>> b

>>> d = student(’'ranum’,’david’ ,3.8)
>>> g = student(’gates’,’bill’,2.9)
>>> A = [b,d,g]

>>> A

[brad miller: 4.0, david ranum: 3.8, bill gates: 2.9]
>>> insertionSort (A)

>> A

[bill gates: 2.9, david ranum: 3.8, brad miller: 4.0]

3.2 Trees

Having examined a simple algorithm, we will turn our attention to a data structure. A com-
mon introductory data structure is the Tree. In Many algorithms textbooks use a recursive
definition of a tree as follows:

Either a tree is empty, or it consists of a root and zero or more subtrees, each
of which is also a tree.

Unfortunately implementing the recursive definition is very difficult in Java or C++. Most
data structures textbooks define an outer class called tree, with an inner class called TreeN-
ode that maintains the relationships between a node and its children.

In Python there is a nice progression that we can follow from a very simple recursive tree
data structure using lists to a recursive class based data structure. This progression allows
the students to get comfortable with the concept of a tree, and throughout the progression
emphasizes the importance of abstracting the representation of a data structure away from
its operations.

To get started with trees and get a basic understanding of the data structure we can use a
very simple list of lists representation. In a list of lists representation for a tree we will
store the value of the root node as the first element of the list, the second element of the list
will itself be a list the represents the left subtree, and the third element of the list will be
another list that represents the right subtree. To illustrate this storage technique consider the
following example. Figure 1 shows a simple tree. The corresponding list implementation
for this tree is:

>>> myTree = [’'a’,
(b, [d", [1., (11, ['e", [1. [11 1,
[c', ['f", 011, [11, 11 1]

Notice that we can access subtrees of the list using standard list indices. The root of the tree
is myTree[0], the left subtree of the root is myTree[1], and the right subtree is myTree[2].

Figure 1. A small example tree

The following Python transcript illustrates creating a simple tree using a list. Once the tree
is constructed we can access the root, left, and right subtrees.

One very nice property of this list of lists approach is that the structure of a list representing

a subtree adheres to the structure defined for a tree. A subtree that has a root element and
two empty subtrees is a leaf node Another nice feature of the list of lists approach is that

it generalizes to a tree that has many subtrees. In the case where the tree is more than a
binary tree subtree is just another sublist.

>>> myTree
['a’, ['b", ['d”,], (1], ['e’, [1. (111,
(e, [7F7, 01, (11, [11]

>>> myTree[1]

(b, [d*, [1., [11, ['e”, I, [I]]
>>> myTree[0]

la!

>>> myTree[2]

(e’ [°F0 01, (O], 1]

With this representation of a tree we can now write some simple functions to access the
parts of the tree. At this point it is a very natural progression to begin talking about op-
erations on an abstract data type called a Tree. In listing 7 we show a few simple access
functions and the code for an inorder traversal.

The following interactive Python session demonstrates the use of the functions defined
above.

>>> T

(7., [5, [3. [, [1I. (6, (1. [111., [11, 8, [I. [Il. [11]
>>> getRootVal(T)

7

>>> getLeftChild (T)

[5, (3, II., (11, [6, I, [II]

10

Listing 7: Python code for simple tree operations

def getRootVal(root):
return root[0]

def getLeftChild(root):
return root[1]

def getRightChild(root):
return root[2]

def inorder(tree):
if tree I= []:
inorder (getLeftChild (tree))
print getRootVal(tree)
inorder (getRightChild (tree))

>>> getRightChild (T)
(11, 8, (1, [11. [l

>>> inorder (T)

R 00~NO 01w

In part one of our tree discussion we have introduced some functions to operate on a tree
and access parts of a tree where the structure is very apparent. In part two of the discussion
can move on to a class implementation that represents a tree as an abstract data type. At
this point it even makes sense to talk about a different internal representation for the tree.
In listing 8 we show part of the class definition for a binary tree that directly implements
the recursive definition above.

If you look at the listing carefully you will see that when we call getRightChild we are

in fact returning a BinaryTree object. At this point we may choose to implement the tree
traversal as a method of the abstract data type, or we may implement it as an external
function using the methods of the tree as before. In fact now is a good time to show our
students that even though we have completely changed the implementation of our data
structure we only need to make one tiny change to the exteroler function in order

for it to work with this new tree.

In the following example we construct and traverse a tree built with our new implementa-
tion of inorder. For students who may still be struggling with the ussetff in Python’s

object system, this sequence provides an excellent time to reinforce the use of self as an
implicit parameter. You can simply point out that the tree parameter passed to the various

11

Listing 8: A recursive binary tree abstract data type

class BinaryTree:
def __init__(self,rootObj):
self.key = rootObj
self.left = None
self.right = None

def insertLeft(self ,newNode):
if self.left == None:
self.left = BinaryTree (newNode)
else:
t = BinaryTree (newNode)
t.left = self.left
self.left =t

def getLeftChild(self):
return self. left

Listing 9: Inorder that works with new tree abstract data type

def inorder(tree):
if tree != None:
inorder (tree.getLeftChild ())
print tree.getRootVal()
inorder (tree.getRightChild ())

12

functions has been replaced by the instance of tree to the left of the dot. However a tree is
still passed implicitly to the function through the parameter called self.

>>> t = BinaryTree (7)
>>> t.insertLeft (3)

>>> t.insertRight (9)
>>> | = t.getLeftChild ()
>>> |.insertLeft (1)

>>> |.insertRight (4)
>>> inorder (t)

O ~NPhWPEk

Although we have only shown you a few short examples of Python programming we hope

that you can see that it has great advantages for cleanly programming important algorithms.
In addition we have tried to demonstrate a few key language features such as polymorphism
and operator overloading. We believe that the language features along with the kind of

exploratory programming that Python encourages will help students be well prepared for

the next stage of their educational development in Computer Science.

4 Conclusion: Python Works

Teaching and learning computer science using Python has been and continues to be a posi-
tive experience. Students are more successful and have gained and shown more confidence.
In a single semester our students completed 27 programming exercises. This was over twice
that of previous years. In addition, more students successfully completed all projects.

From a teaching perspective, Python is very gratifying. It has a clean, simple syntax and
an intuitive user environment. The basic collections are very powerful and yet easy to
use. The interactive nature of the language creates an obvious place to test data structure
components without the need for additional coding of driver functions. Finally, Python
provides a textbook-like notation for representing algorithms alleviating the need for an
additional layer of pseudocode. This allows the illustration of many relevant, modern, and
interesting problems that make use of the algorithm and data structure ideas.

Although it may appear that teaching Java as an introductory language is a foregone con-
clusion, we believe that it does not need to be the case. We believe that it is advantageous
for beginning students to spend time on the green runs learning the rudimentary ideas re-
lating to algorithms and data structures. If you are among those of our colleagues who are
frustrated with Java or C++, we encourage you to consider Python and join us on the green
runs, it works.

13

References

[1] P. H. ChouAlgorithm education in pythqriProceedings of Python 10, 2002.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford $tein,
troduction to algorithmsMIT Press, 2001.

[3] ACM Java Task Forcelaxonomy of problems in teaching java

[4] A. I. Forsyth, T. A. Keenan, E. I. Organick, and W. StenbeZgmputer science: A
first course John Wiley, 1975.

[5] Jeremy D. FrensTaming the tiger: teaching the next version of ja8GCSE '04:
Proceedings of the 35th SIGCSE technical symposium on Computer science educa-
tion, ACM Press, 2004, pp. 151-155.

[6] Viera K. Proulx and Richard Rasaldava io and testing made simpl8IGCSE '04:
Proceedings of the 35th SIGCSE technical symposium on Computer science educa-
tion, ACM Press, 2004, pp. 161-165.

[7] Eric Roberts,The dream of a common language: the search for simplicity and sta-
bility in computer science educatip8IGCSE '04: Proceedings of the 35th SIGCSE
technical symposium on Computer science education, ACM Press, 2004, pp. 115—
119.

[8] Frank StajanoPython in education: Raising a generation of native speakiers-
ceedings of Python 8, the International Python Conference, 2000.

[9] Mark Allen Weiss,Data structures and problem solving using jayaldison Wesley,
2002.

[10] John M. ZellePython as a first languag®roceedings of 13th Annual Midwest Com-
puter Conference, 1999.

[11] , Python programming: An introduction to computer scigriéeanklin Bee-

dle, 2003.

14

