
Systems Capstone Projects: On which platforms should
we have our students perform?

Jay Hettiarachchy
Computer Information Systems Department

Ferris State University
Big Rapids, MI 49307
hettiarj@ferris.edu

Abstract

Educators training students in Computer Information Systems discipline face many
challenges today in choosing platforms – computer hardware, operating systems and
software. Designing physical layout of systems projects has become one of the most difficult
challenges. In this paper, the author traces his learning experience with students taking the
senior capstone course from him within the past 20 years. Within this period many changes
took place in the hardware and software industry. While Client/Server computing has
become pervasive in information industry, object oriented design and object oriented
programming have made remarkable changes in the way we design and implement systems.
Web presence and gathering and manipulating data dynamically has become a necessity in
today’s work place. In concluding remarks, the author discusses the implications of these
changes on curricular development and presents some strategies that promote learner-
centered best practices in the field of information technology.

 2

Introduction:

The term “platform” as it is used in association with computers and computer application
systems may mean different things to different people. To some a “platform” may mean the
hardware on which a given application program runs. More specifically, this is a “hardware
platform” such as x86, SPARC, PowerPC or Alpha. To others, a “platform” may be an
operating system on a given hardware platform. For example, Linux, the various flavors of
UNIX, various versions of Microsoft Windows, Mac OS, AIX, Solaris etc. But what about
other large programs such as Database Management Systems (DBMS), program languages
etc. which run on specific and proprietary hardware and software platforms? Examples are,
DB2, MSSQL, for DBMSs, and Java, VB.NET, ASP.NET for programming languages.
Furthermore, the diversity of platforms based on hardware, operating systems, database
management systems, and programming languages have brought about a new generation of
“cross platform” applications that are “platform-independent.” Such applications are capable
of performing their tasks on many different hardware platforms and operating systems. The
Internet and the Web are among the greatest success stories of platform independence. Some
programming and scripting languages such as C, Java, Perl, PHP and Python have
significantly contributed towards platform independence. Portability across multiple
platforms seems to be the main goal of open source software developers.

This paper is an attempt to address the challenges faced by educators in preparing students to
face the realities of the work world consisting of such multitude of different “platforms.”

Platforms and Capstones:

The capstone course is an opportunity for students to demonstrate that they have achieved the
goals for learning established by their educational institution and major department. Ideally,
the course should foster interdisciplinary partnerships among university departments and help
cultivate industry alliances and cooperation. Capstone courses in Computer Science and
Computer Information Systems disciplines have the same broad objectives. The rapid growth
in the computer and information industry has however presented significant challenges in
achieving these goals. A brief description of the challenges involved in this field within the
past 20 years is given below.

In the late 80 and early 90s capstone computer applications systems in most colleges were
primarily developed using either mainframes or mid-range computers. The author remembers
the time when he trained students on IBM mainframes and mid-range hardware with IBM
operating systems, IBM proprietary database management systems and programming
languages, Digital Equipment Corporation’s (DEC) hardware and operating systems, and
many other different hardware and software such as UNIVAC, Perkin Elmer and Data
General hardware and operating systems and programming languages. Most colleges during
that time could only afford a single hardware and software platform -- one mainframe
computer or mid-range computer when it came to supporting academic computing. There
was a strict separation between academic computing and administrative computing due to
security reasons, with the result that industry-standard DBMSs like IBM DB2, Oracle,

 3

Informix, and Adabas were not available in colleges for student use. The result was that there
were very limited industry-standard hardware and software resources available for
developing senior capstone projects. Most senior capstone projects were developed using
procedural programming languages such as BASIC, COBOL and RPG II, III languages,
mostly using conventional “flat files.” The availability of an IBM AS/400 with RPG 400
with a DBMS similar to IBM DB2 database management system at a college for senior
capstone course was truly a luxury in the early 90s.

The computing landscape started to change in the 90s with the growth and development of
micro-computers, micro-computer operating systems, micro-computer network management
systems, client/server systems, and the Internet. It was also a time when micro-computer
hardware platforms changed rapidly and radically. Micro-processor manufacturing industry
together with the operating systems manufacturing industry took “quantum leaps” during the
90s. While the popular PC Disk Operating Systems (DOS) went through several incarnations,
several versions of Windows operating system, OS2, Windows NT, and Local area networks
such as Novell Network were invented during this time. Micro-computer versions of almost
all popular programming languages, database management systems such as dBase, Rbase,
Sybase, Access, MS SQL, and MySql gained popularity both in educational institutions and
industry. The popularity of the Internet and the Web gained in leaps and bounds during the
same time transforming stand-alone micro-computers to Client/Servers that enabled micro-
computers to do many of the tasks that were previously done primarily by the mainframes
and mini computers. In reality, Client/Server computing technology “crept into” mainframe
and mini computer market of the previous years. The author had many students do capstone
projects using dBase, Rbase5000 DBMSs on DOS machines in the 80s and early 90s.
However, as in 1994/5, one CIS capstone project the author guided consisted of creating a
Web Server for the college by the graduating seniors. This project effort perhaps coincided
with the change in focus of applications development in the late 1990s.

In the wake of all these technological development – hardware, operating systems, DBMSs,
object oriented programming languages, and Client/Server computing -- there was a
significant shift in demand from conventional hardware, and operating systems to
Client/Server computing, both in the business sector and in the academic world. Naturally,
students in the CIS programs wanted to learn the technological skills that are in high demand
in the work place. Consequently, the gap between the old and traditional way of using
traditional conventional hardware, operating systems, and database management systems for
applications development, and the new way of using Client/Server systems with object
oriented programming languages and Internet-based application systems development
widened significantly.

Capstones and the World of Objects:

When it comes to software platforms, the buzzwords in the computer industry are: simple,
object-oriented, distributed, robust, secure, architecture-neutral, portable, high-performance,
multithreaded, and dynamic. Whereas all programming languages used in the previous
generation were “procedural programming languages”, programming languages starting with

 4

Simula through C++, are centered on creating objects, manipulating objects and making
objects work together by re-using them. Java, Visual Basic. NET, ASP.NET are popular
object-oriented languages that belong to this category.

Object-oriented programming models the real world in terms of objects. Programmers define
not only the data types and data structures, but also the types of operations that can be
applied to the data structure thereby making data structure an object that include both data as
well as the associated operations. In manipulating objects, programmers can create
relationships between one object and another. Since objects can inherit characteristics from
other objects, a programmer can simply create a new object that inherits many of its features
from existing objects. This makes object-oriented programs easier to modify.

However, switching from procedural programming languages to object-oriented
programming is not always an easy transition. Object-oriented programming involves
learning to use object-oriented systems design methods as well. Procedural programmers
need to not only unlearn most conventional programming practices, they have to learn to
adopt new methods of designing applications systems using object-oriented design methods.
Such a transition in colleges seems to create the following difficulties. 1) Operational costs
involved in switching to new platforms 2) Difficulties associated with selecting a suitable
platform that would satisfy all contending parties 3) Having to maintain the existing
platforms to facilitate the existing curricula using traditional hardware, operating systems,
programming languages like COBOL, RPG, Pascal (in some colleges), and not having
enough resources, both material and human to meet the needs of the transition satisfactorily
4) Keeping up with rapid changes in the industry.

A parallel development that has significantly impacted the course of development of
capstone courses in computing discipline is that of the Internet. Although it is generally
assumed that developing large scale systems projects as classroom projects is an almost
impossible task within the time limitations of semesters, currently there seem to be a growing
demand and student interest in developing applications systems that are Internet based and
available from anywhere in the world.. The recent growth of e-commerce industry and the
high demand for systems analysts and programmers experienced in Internet-based
application development greatly contributes to this demand. Publishing and dynamically
manipulating data and information on the World Wide Web has become one of the most
important needs of the application systems development industry. The ability for users to
interact with a business, collect and process mission-critical information in real time, and
provide new levels of user support have become increasingly important aspect in applications
development.

On which platforms then should we have our students perform?

Obviously, the demand for developing capstone courses on traditional platforms using
procedural programming languages seem to be declining. At the same time, the requirements
for developing systems using programming languages and tools that are greatly demanded in
the work place and “easer to learn” seems to be on the rise. Further, programming languages

 5

that seamlessly interface with almost all of the popular DBMSs and the World Wide Web
seem to attract applications developers as well as students. Today, not only are there a large
number of contending platforms available, but also they seem to have a shorter productive
life cycle with each claiming to provide “newly improved and enhanced versions.” The Web
will attest to such claims made by almost all parties that strive to set industry standards. With
each new version these products have added more functions to their newer versions, but at
the same time they have become increasingly complex as well. The author’s experience in
working with the changing technology has been that there is a considerable amount of
unlearning as well as new learning to do in transitioning from one version to another. The
transition from Visual Basic version 6 to VB.NET and ASP.NET is a good example in this
respect.

Within the past three years the author encouraged his graduating class of CIS students to
develop and implement computer applications on several different platforms. The rationale
for such experimentation and the associated challenges form the discussion of the rest of this
paper.

The availability of a multitude of platforms that are competing for dominance in the industry
as well as the market place for developing applications was one reason for experimenting on
platforms other than mainframes and mini computers. Another more important reason was to
give the graduating students an opportunity to gain hands-on experience in developing
applications systems using popular Client/Server-based software. A third reason was the
short period of time – one semester – available for developing a fully functional and Web-
enabled application system that manipulates a back-end database such as MSSQL or MS
ACCESS. One platform that fits all these criteria is ColdFusion Server working in tandem
with Internet Information Server (IIS) and MS-SQL Server running on a Windows NT
Server. Obviously, such a “platform” consists of a number of hardware, operating systems,
database management systems, a Web Server including ColdFusion programming
environment working in harmony.

ColdFusion was developed by the Allaire Corporation to be a simple to use yet powerful
alternative to Perl and other CGI technologies. Allaire Corporation was recently acquired by
Macromedia the same company that developed Flash, Shockwave, Dreamweaver and many
other high impact web authoring tools. ColdFusion is an application that runs on a web
server. It runs on Linux, Solaris, and Windows Servers. The ColdFusion Web Application
Server works with the HTTP server to process requests for web pages. Whenever a
ColdFusion page is requested, the ColdFusion Application Server executes the script or
program the page contains. ColdFusion interacts with Database Management Systems such
as Sybase, Oracle, MySQL, SQL, or Access by using standard SQL (Structured Query
Language), thereby enabling web applications to retrieve, store, format, and present
information dynamically. Unlike JavaScript, and Java Applets, which run on the "client", or
"web browser", ColdFusion runs on the Web Server. This means that ColdFusion scripts
(tags) will run the same way on every browser. However, ColdFusion also comes with a
price tag that makes it harder for colleges to keep up with site licensing and upgrading for
newer versions.

 6

A second platform used for implementing applications was a Linux Server running PHP and
MySQL database. The following excerpt provides a good summery of PHP capabilities:

PHP is an established server-side scripting language for creating dynamic Web pages. As a
language that has been designed expressly for the Web, it brings many features that
commercial entities are looking for: Exceptionally short learning curve, quick development
time, and very high performance. This is essential for companies who are faced with scarce
skilled programming resources and ever-tighter time to market deadlines. In addition, PHP
supports all major platforms (UNIX, Windows and even mainframes), and features native
support for most popular databases. All these factors make it a very good choice for Web
development. [Those who] work with PHP have reported being able to hire non-
programmers and have them producing usable code within days. Programmers familiar with
languages such as C, C++ or Java frequently find that they can begin programming in PHP
within a few hours. The fact that PHP was designed specifically for Web development gives
it an edge as a development tool, as Intranet Design Magazine explains: "PHP was built with
the needs of Web developers in mind... Unlike other cumbersome, overhead-laden
approaches, PHP is lightweight and focused on the Web.1

One of the advantages of using PHP is that it comes free. Students who have a good
foundation in procedural programming and object-oriented programming are able to pick up
PHP scripting easily.

The author’s third choice was ASP.NET platform on Windows Operating System and the
Internet Information Server.

ASP.NET is designated by some experts as a technology rather than a programming
language. The technology is accessible via a programming language. Therefore one can
create Web pages using Visual Basic.NET and using ASP.NET to drive it.2

However, ASP.NET has a steeper learning curve - the operating systems, databases,
programming languages, and the IIS Web Server needed to set up the “platform” for running
an ASP.NET work environment that comes with a price tag and network expertise on the part
of the server administrator. Although students tend to think that learning ASP.NET will have
its payback time in the job market, most students today tend to shy away from wanting to
develop applications systems on “platforms” that demand a good deal of programming.

Conclusions:

Advancements in computer hardware, operating systems, database management systems, and
object-oriented programming languages within the last two decades have brought about
many challenges of a practical nature in the work world as well as in the educational world.
Responding to the demand for educating and training computer professionals able to provide
ubiquitous, secure and high-performing computing applications within a short period of time
with minimum conventional programming expertise seems to be one of the greatest
challenges for educators today. Keeping up with technological advancements of all the latest

 7

programming languages and satisfying student demands for hands on experience with the
available hardware and software resources in educational institutions is a challenge by itself.
Maintaining several hardware and software platforms for academic use can only be
successfully achieved by involving students in setting up and maintaining such platforms.
Students who have had a solid foundation in procedural programming and object-oriented
programming languages continue to demonstrate that they could easily adapt themselves to
building applications systems using the latest software platforms and tools. This of course
should not surprise anyone who had a solid educational foundation in computing.

References:

1. http://www.zend.com/zend/art/php-over-java.php

2. Beginning ASP.NET with Visual Basic.NET, Rob Birdwell et al, Wrox Press Ltd, 2002.

