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Abstract

An  understanding  of  IEEE  754  standard  conforming  floating- point
arithmetic  is  essential  for  any  computer  science  student  focusing  on
numerical  computing.   This  topic,  however,  can  often  be  difficult  for
students  to  unders tand  from  an  abstract,  conceptual  point  of  view.   FPSim
presents  instructors  with  a  tool  to  visually  demonst rate  the  operation  of
IEEE 754  floating- point  arithmetic.   This  Java  applet  is  designed  to  be  a
full  and  accurate  implementation  of  the  IEEE 754  specification.   The  applet
demonstrates  addition,  subtraction,  multiplication,  and  division  of  Single
and  Double  floating- point  numbers.   Output  shows  the  process  of
normalizing  and  rounding  the  number  with  guard  bits  and  the  sticky  bit.
It  also  shows  the  effects  of  the  operation  on  the  five  floating- point
exception  flags.

In  order  to  accurately  implement  the  IEEE 754  standard,  FPSim  performs
most  arithmetic  in  software,  with  little  reliance  on  the  floating- point
capabilities  of  either  Java  or  the  underlying  hardware.   The  program
stores  numbers  in  binary  as  arrays  of  integers.   Arithmetic  functions  then
work  with  these  arrays.   Division  is  implemented  by  reciprocation  through
the  use  of  Newton's  Method.   This  paper  will  present  the  internal  workings
of  FPSim.



Introduction

The  ANSI/IEEE  Std  754- 1985  IEEE Standard  for  Binary  Floating- Point
Arithmetic  defines  the  most  widely  used  standard  for  binary  floating-
point  arithmetic.   Specifically,  the  standard  defines  how  floating- point
numbers  are  to  be  stored  and  rounded  and  how  exceptional  conditions  are
to  be  handled.   Any  student  taking  a  course  in  numerical  computing  must
begin  with  a  solid  comprehension  of  binary  floating- point  arithmetic  as
defined  by  this  standard.   Like  anything  else,  a  visual  demonst ration  could
give  students  a  more  thorough  understanding  of  this  topic.   FPSim  is
designed  to  do  just  that.   It  is  a  Java  applet  which  fully  implements  the
IEEE 754  standard  and  provides  a  graphical  display  of  the  arithmetic
process.   What  follows  is  a  brief  overview  of  the  standard  followed  by  a
description  of  FPSim and  its  internal  data  structures  and  algorithms.   For  a
more  thorough  overview  of  the  IEEE 754  standard  and  floating- point
arithmetic,  the  reader  should  see  [3] and  [4].

Binary  Representation

Let β  be  the  base  of  a floating- point  number  and  p  its  precision.   Then  the
number  ± d 0.d 1d 2...d p- 1 × β e represents  the  number

± d 0d 1
−1d 2

−2...d p−1
−p−1e , 0≤d i .

The  part  d 0.d 1d 2...d p- 1 is  referred  to  as  the  significand  (also  known  as  the
fraction  or  mantisa).   

The  IEEE 754  standard  defines  two  floating- point  number  storage  formats:
Single  and  Double.   A Single  floating- point  number  consists  of  32  bits  and
a  Double  floating- point  number  consists  of  64  bits.   Each  format  is
separated  into  three  fields  as  shown  in  Figure  1 and  Figure  2.

Figure  1: The  Single  format  bit  fields.
Sign
1 bit

Biased  Exponent
8 bits

Significand
23  bits
←Most  significant  bit         Least  significant  bit→

    31        30                    23  22          0

Figure  2: The  Double  format  bit  fields.
Sign
1 bit

Biased  Exponent
11  bits

Significand
52  bits
←Most  significant  bit         Least  significant  bit→

    63        62                    52  51          0



The  exponent  is  stored  as  an  unsigned  integer.   From  this  integer  a  bias  is
subtracted  to  retrieve  the  correct,  signed  exponent.   There  are  two
numbers  of  interest  associated  with  the  exponent:  emin  and  emax  are  the
smallest  and  largest  possible  exponent  values  for  a  given  format.   Table  1
shows  the  details  of  the  exponent  for  Single  and  Double  format  numbers.

Table  1: The  exponent  ranges  for  the  standard  IEEE 754  formats.
Format Exponent

Length
Bias Unbiased

Range
e min e max

Single 8 bits 127 0 to  255 - 126 127

Double 11  bits 1023 0 to  2047 - 1022 1023

In  addition  to  Single  and  Double  types,  the  IEEE 754  standard  allows  for
architecture - specific  Extended  formats.   For  example,  the  Intel  IA- 32
architecture  includes  80- bit  Double  Extended  floating- point  numbers.

Normal  and  Subnormal  Numbers

The  most  significant  bit  of  the  binary  floating- point  significand  is  always
assumed  to  be  the  only  digit  to  the  left  of  the  “binary  point”.   Let
b0.b1b2...bp- 1 be  the  significand  of  a  binary  floating- point  number  of
precision  p .  If b0 is  one,  the  number  is  said  to  be  normal ; if  b0 is  zero,  the
number  is  subnormal.   IEEE 754  treats  normalized  numbers  as  the
common  case  and  does  not  store  the  most  significant  bit.   Subnormal
numbers  are  required  when  a  number's  exponent  would  be  less  than  emin  if
normalized.   In  this  case,  the  number  is  right - shifted  until  it  has  an
exponent  of  emin  – 1  (see  Table  2).  This  leads  to  a  loss  in  precision  and  the
underflow  exception  being  thrown.

Table  2: Interpretation  of  binary  floating- point  numbers  from  their
exponent.

Unbiased  Exponent Interpreta tion

e =  emin  -  1 ±  0. b1b2...bp- 1  × 2 emin

emin   ≤ e  ≤ emax ±  1. b1b2...bp- 1  × 2 e

e = emax  +  1 ± Infinity  if  b1= b2=...= bp- 1=0,
NaN otherwise

Special  Values

IEEE 754  defines  two  special  values:  Infinity  and  Not  a  Number  (NaN).  NaN
results  from  performing  some  invalid  operation  like  those  listed  in  Table  3



below .  There  is  no  single  representation  of  NaN, but  instead  a  whole  set  of
possible  representations.   Any  number  with  an  exponent  of  emax  +  1  and  at
least  one  bit  of  the  significand  field  set  is  NaN.   There  is  only  one
distinction  made  between  any  possible  bit  patterns  of  a  NaN.  If the  most
significant  bit  of  the  significand  field  is  set,  the  number  is  a  quiet  NaN; if
that  bit  is  clear,  the  number  is  a  signaling  NaN.   A signaling  NaN used  in
one  of  the  invalid  operations  listed  in  Table  3  will  trigger  an  invalid
exception,  but  a  quiet  NaN will not.   An invalid  operation  involving  either  a
signaling  or  a  quiet  NaN as  an  input  will output  a  quiet  NaN.

Table  3: Invalid  operations  which  produce  NaN.
Operation NaN  Produced  By

Addition / sub trac tion  ∞ +  (- )∞

Multiplication 0 ×  ∞

Division 0 /  0,   /  ∞ ∞

Rounding

Regarding  the  issue  of  rounding,  the  IEEE 754  standard  states  that

“...every  operation...shall  be  performed  as  if it  first  produced  an
intermediate  result  correct  to  infinite  precision  and  with  unbounded
range,  and  then  rounded  that  result  according  to  one  of  the  [four
rounding]  modes”  [5]

Of  course  producing  a  result  that  is  correct  to  infinite  precision  would  be
impossible  much  of  the  time,  so  the  use  of  guard  bits  and  a  sticky  bit  is
employed  for  the  purpose  of  correct  rounding.   A set  of  n  guard  bits  will
contain  the  last  n  bits  right - shifted  out  of  the  result  during  an  operation.
Essentially,  the  number  of  significant  bits  is  temporarily  increased  by  n .
The  sticky  bit  will  capture  any  set  bits  that  are  right - shifted  out  of  the
guard  bits.   It  is  referred  to  as  “sticky”  because  once  set,  it  remains  set
until  the  current  operation  is  complete.   FPSim  uses  two  guard  bits  and  a
sticky  bit  to  ensure  correctly  rounded  results.

There  are  four  different  methods  for  rounding  specified  by  IEEE 754.   The
defualt,  round  to  nearest , will  round  to  the  nearest  representable  number.
In  the  event  that  two  representable  numbers  are  equidistant  from  the
result,  the  even  number  is  taken.   The  three  other  modes  are  round
towards  +Infinity ,  round  towards  - Infinity,  and  round  towards  zero .
Certain  care  must  be  taken  when  rounding  ±Infinity  with  these  last  three
modes  – see  Table  4.



Table  4: Results  of  rounding  ±Infinity.
Round  Mode Result  for  +Infinity Result  for  - Infinity

Round  Towards  Zero 1.11...1 ×  2 emax - 1.11...1 ×  2 emax

Round  Towards  +Infinity +Infinity 1.11...1 ×  2 emax

Round  Towards  - Infinity - 1.11...1 ×  2 emax - Infinity

Floating- Point  Exceptions

The  IEEE 754  standard  defines  five  floating- point  arithmetic  exceptions.

1) Invalid  – Occurs  from  any  of  the  operations  listed  in  Table  3.
2) Division  by zero  – Occurs  when  attempting  to  divide  by zero.
3) Overflow  – Indicates  that  the  result  of  an  operation  was  larger

than  the  maximum  possible  value  for  the  format  being  used.
4) Underflow  – Occurs  when  the  result  of  an  operation  is  subnormal.
5) Inexact  – Indicates  that  the  rounded  result  of  an  operation  is  not

exact  – in  other  words,  some  precision  may  have  been  lost.

Design

One  of  the  primary  goals  for  FPSim  was  to  create  an  implementation  that
would  be  as  true  as  possible  to  the  IEEE 754  standard.   For  this  reason,  the
program  stores  all  numbers  and  performs  all  floating- point  arithmetic  in
software.   There  is  little  dependence  on  the  underlying  hardware  or  Java
virtual  machine  floating- point  functionality.

Internal  Floating- point  Number  Storage

Within  the  program,  the  significand  of  each  number  is  stored  as  an  array
of  integers  taking  on  the  values  zero  or  one.   For  the  sake  of  simplicity  in
the  arithmetic  algorithms,  the  leading  bit  of  the  significand,  which  is
implicit  in  the  IEEE Single  and  Double  formats,  is  included  in  this  array.
The  array  is  exactly  the  size  of  the  number  of  significant  bits,  with  the
most  significant  bit  at  index  zero.

Several  other  fields  also  describe  the  number.   The  exponent  is  stored  as
an  integer  and  is  unbiased.   The  sign  bit,  as  well,  is  an  integer,  being  either
zero  to  indicate  positive  or  one  to  indicate  negative.   The  current  state  of
the  number  – whether  it  is  normal,  subnormal,  zero,  NaN,  or  infinity  – is
also  stored.



Addition  and  Subtraction

Addition  and  subtraction  within  FPSim  both  begin  in  the  same  procedure.
This  procedure  will  decide  whether  to  add  or  subtract  the  two  operands
based  on  the  specified  operation  and  the  operand  signs.   This  algorithm  is
outlined  in  Appendix  A.1.  Once  this  decision  has  been  made,  the  operands
are  sent  to  either  the  addition  or  subtraction  procedure.   These  procedures
are  outlined  in  Appendix  A.2 and  A.3.  

The  task  of  adding  or  subtracting  the  significands  is  performed  by
software  implementa tions  of  binary  adder  and  subtracter  circuits.   Early  in
the  development  of  FPSim,  subtraction  and  addition  of  negative  numbers
was  implemented  by  obtaining  the  twos- complement  of  the  operand's
significand  and  then  adding.   This  lead  to  an  overly  complicated  process
for  subtracting,  and  eventually  a  separate  binary  subtracter  circuit  was
implemented.

Multiplication

The  multiplication  algorithm  used  in  FPSim  is  outlined  in  Appendix  A.4.
Multiplication  of  the  significands  is  performed  by  a  software  binary
multiplier  circuit.   An array  of  size  2n , where  n  is  the  number  of  bits  in  the
significand,  is  used  for  the  algorithm.   When  the  multiplication  is  finished,
the  result  is  taken  to  be  the  first  n  bits  in  the  array.   The  next  two  bits
comprise  the  guard  bits;  any  set  bit  after  those  two  will  cause  the  sticky  bit
to  be  set.

Division

Division  in  FPSim  is  by  far  the  most  complex  of  the  four  arithmetic
operations.   Division  is  performed  by  reciprocation,  where  the  reciprocal
for  the  divisor  is  found  and  then  multiplied  by  the  dividend.   FPSim  uses
Newton's  Method  to  find  this  reciprocal.   We begin  with  the  equation

f  r = 1
r
−d ,

where  d  is  the  divisor.   The  root  of  this  function  corresponds  to  the
reciprocal  of  the  divisor.   Note  that  for  the  derivative,  we have

f '  r =− 1

r 2
.



If  A 0 is  an  initial  approximation  for  the  reciprocal  of  the  divisor,  than  at
each  iteration  of  Newton's  Method,  we will compute

A n=A n−1
f  A n−1

f '  A n−1

=A n−1
1/ r−d

1/ r 2

=A n−1r−d r 2 fo r n≥1.

Since  A n - 1 is  an  approximation  of  r, we replace  r with  A n - 1 and  obtain

A n=2 A n−1−d A n−1
2

= A n−12−d A n−1 fo r n≥1.

The  greatest  difficulty  in  this  approach  to  division  is  finding  a  good  initial
approximation  for  the  reciprocal.   FPSim uses  a  formula  described  in  [2] to
make  this  approximation.   Let  Y  be  the  divisor,  n  be  the  number  of
significant  bits  in  Y  and  m  be  an  integer  such  that  0  <  m  <  n .   Let
p  =  1.y 1y 2...ym  and  q  =  0.00...0 y m +1 y m +2 ...y n .  Then  the  initial  approximation
A 0 is  given  by

A 0=
q q−2− m

p 3 .

The  computation  of  A 0 is  the  one  and  only  part  of  FPSim  that  uses  Java's
floating- point  functions.   A hardware  implementation  would  likely  use  a
lookup  table  with  a  number  of  values  of  this  formula  already  computed.
This  is  not  as  feasible  in  FPSim,  where  a  floating- point  number  requires
much  more  than  the  4  to  16  bytes  needed  in  hardware.   Even  a  relatively
small  lookup  table  would  consume  a  very  large  amount  of  memory.
Neither  could  the  approximation  be  computed  on  demand  in  software,
since  it  requires  a  division  –  the  very  operation  that  we  are  ultimately
trying  to  perform.   So  the  approximation  is  computed  by  hardware  and
then  converted  to  FPSim's  internal  floating- point  format.

Testing

A  program  called  TestFloat  [1]  is  being  used  to  verify  the  accuracy  of
FPSim.   TestFloat  compares  the  results  of  a  computation  from  a  software -
based  floating- point  arithmetic  engine,  called  SoftFloat,  to  that  of  the
target  implementation.   It  reports  any  discrepancies  between  the  two  in
the  resulting  number  or  exception  flags.   TestFloat  was  designed  for
testing  hardware,  so  some  modifications  were  necessary.   Each  line  of  C



code  in  TestFloat  that  would  normally  compute  the  given  operation  was
replaced  with  a  function  to  execute  a  simple  Java  program.   This  program
contained  all  of  FPSim's  arithmetic  code.   The  operands  and  results  were
then  passed  back  and  forth  between  TestFloat  and  Java.

At  the  time  of  this  paper's  writing,  testing  is  still  in  progress.   At  present,
addition  is  largely  error - free,  with  only  a  few  minor  corrections  that  need
to  be  made.   Multiplication  is  about  50% error - free,  and  division  is  almost
completely  untested.
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Appendix  A

A.1  – Addition  and  Subtraction

Input:  Floating- point  numbers  OPA and  OPB
Output:  Floating- point  number  RESULT.

If (OPA.exp  <  OPB.exp)
Shift  significand  of  OPA right  until  the  exponent  of  OPA matches  
that  of  OPB;

Else  If (OPA.exp  >  OPB.exp)
Shift  significand  of  OPB right  until  the  exponent  of  OPB matches  
that  of  OPA;

If (OPA ==  NaN or  OPB ==  NaN)
RESULT =  NaN;
If (the  NaN operand  is  a  signaling  NaN)

Throw  an  invalid  exception;
Return ;

If (the  specified  operation  is  addition)
If (OPA.sign  ==  OPB.sign)

RESULT =  OPA +  OPB;
Else

If (OPA >  OPB)
RESULT =  OPA – OPB;

Else  If (OPA <  OPB)
RESULT =  OPB – OPA;

Else
RESULT =  Zero;

Else  If (the  specified  operation  is  subtraction)
If (OPA.sign  ==  OPB.sign)

RESULT =  OPA – OPB;
Else

RESULT =  OPA +  OPB;

A.2  – Addition

Input:  Floating- point  numbers  OPA and  OPB
Output:  Floating- point  number  RESULT.

If (OPA ==  Infinity  or  OPB ==  Infinity)
RESULT =  Infinity;
Return ;

RESULT.significand  =  OPA.signficand  +  OPB.significand;
If (the  addition  operation  resulted  in  a  carry  out)

Shift  RESULT's  significand  right  by one  and  set  the  most  significant  



bit  to  one;
Normalize  RESULT;
Round  RESULT;

A.3  – Subtraction

Input:  Floating- point  numbers  OPA and  OPB
Output:  Floating- point  number  RESULT.

If (OPA ==  Infinity  and  OPB ==  Infinity)
RESULT =  NaN;
Throw  invalid  exception;
Return ;

If (OPA ==  Infinity  or  OPB ==  Infinity)
RESULT =  Infinity;
Return ;

RESULT.significand  =  OPA.signficand  – OPB.significand;
Normalize  RESULT;
Round  RESULT;

A.4  – Multiplication

Input:  Floating- point  numbers  OPA and  OPB
Output:  Floating- point  number  RESULT.

If (OPA ==  NaN or  OPB ==  NaN)
RESULT =  NaN;
If (the  NaN operand  is  a  signaling  NaN)

Throw  an  invalid  exception;
Return ;

If (one  operand  is Infinity  and  the  other  is  Zero)
RESULT =  NaN;
Throw  invalid  exception;
Return ;

If (OPA ==  Infinity  or  OPB ==  Infinity)
RESULT =  Infinity;
Return ;

If (OPA.sign  ==  OPB.sign)
RESULT.sign  =  Positive;

Else
RESULT.sign  =  Negative;

RESULT.exponent  =  OPA.exponent  +  OPB.exponent;
RESULT.significand  =  OPA.significand  * OPB.significand;
Normalize  RESULT;



Round  RESULT;

A.5  – Division

Input:  Floating- point  numbers  OPA and  OPB
Output:  Floating- point  number  RESULT.

If (OPA ==  NaN or  OPB ==  NaN)
RESULT =  NaN;
If (the  NaN operand  is  a  signaling  NaN)

Throw  an  invalid  exception;
Return ;

If (OPA ==  Zero  and  OPB ==  Zero)
RESULT =  NaN;
Throw  an  invalid  exception;
Return ;

If (OPB ==  Zero)
RESULT =  Infinity;
Throw  divide  by zero  exception;
Return ;

If (OPA.sign  ==  OPB.sign)
RESULT.sign  =  Positive;

Else
RESULT.sign  =  Negative;

Compute  OPB_INVERSE, the  reciprocal  of  OPB;
RESULT =  OPA * OPB_INVERSE;
Normalize  RESULT;
Round  RESULT;

A.6  – Normalization

Input:  Floating- point  number  NUMBER

If (NUMBER.exponent  <  emin )
Right- shift  NUMBER until  NUMBER.exponent  ==  emin ;
Return ;

If (emin  <  NUMBER.exponent   ≤ emax )
Left- shift  NUMBER until  the  most  significant  bit  is  one  or  until  
NUMBER.exponent  ==  emin ;
Return ;

If (NUMBER.exponent  >  emax )
NUMBER =  Infinity;
Throw  overflow  and  inexact  exceptions;
Return ;



A.7  – Rounding

Input:  Floating- point  number  NUMBER; guard /s ticky  bits  from  the  last  
operation  stored  in  the  three- element  array  GUARD

If (no  guard /s t icky  bits  are  set)
Return ;

If (Rounding  Mode  ==  Round  Towards  - Infinity)
If (NUMBER.sign  ==  Positive)

Truncate  NUMBER.significand;
Else

Increment  NUMBER.significand;
Else  If (Rounding  Mode  ==  Round  Towards  +Infinity)

If (NUMBER.sign  ==  Positive)
Increment  NUMBER.significand;

Else
Truncate  NUMBER.significand;

Else  If (Rounding  Mode  ==  Round  Towards  Zero)
Truncate  NUMBER.significand;

Else  If (Rounding  Mode  ==  Round  to  Nearest)
GUARDVALUE =  GUARD[0] * 4 +  GUARD[1] * 2 +  GUARD[2];
If (GUARDVALUE <  4)

Truncate  NUMBER.signficand;
Else  If (GUARDVALUE >  4)

Increment  NUMBER.significand;
Else

If (least  significant  bit  of  NUMBER.significand  ==  1)
Increment  NUMBER.significand;

Else
Truncate  NUMBER.significand;


