
AN ANALYSIS OF PROBLEMS WITHIN THE SOFTWARE
DEVELOPMENT INDUSTRY WITH AN EMPHASIS ON
THE MYTHICAL MAN-MONTH BY ROBERT BROOKS

Anthony Mwaniki

Dr. Gary Schmidt

Computer Information Sciences Department
Washburn University

TonyM@parod.com
gary.schmidt@washburn.edu

ABSTRACT

The system development industry has fallen short of meeting its objectives in the last
decade. Reasons include factors such as systems not delivered on time to being
functionally obsolete by the time the system is delivered. The end result can be huge cost
overruns with no new functionality to justify the cost.
This paper covers a broad overview of the reasons behind this phenomena and possible
solutions. This paper is based on The Mythical Man-Month by Dr. Robert Brooks,
published in 1975. This book addresses many of these issues ranging from "conceptual
integrity", which is a key factor to determine whether or not a system will function as
required and expected; to the elemental organization of a project team.
This paper also addresses the evolution of software design and development from the old
ad-hoc styles to the emergence of object oriented programming design as a solution to the
issues that face the industry today.

In 1994, the Standish group, (an international group of information systems professionals
and specialists who have many years of hands-on experience in assessing risk, cost, and
return for investments in systems projects development.) conducted a survey on over 350
companies about software projects to find out how the systems were fairing. The results
were sobering. More than half of all programs/systems being developed fail. The survey
seemed to suggest projects were even cancelled before the system was completed. Some
were never used after they were done or they, quite simple, failed to meet the projects
objectives and benefits. This was further compounded because of the half that was
delivered, each ran into its own unique problems. The survey published a year later said
“On the success side, the average is only 16.2% for software projects that are completed
on-time and on-budget. In the larger companies, the news is even worse: only 9% of their
projects come in on-time and on-budget. And, even when these projects are completed,
many are no more than a mere shadow of their original specification requirements. The
cost of these failures and overruns are just the tip of the proverbial iceberg. The lost
opportunity costs are not measurable, but could easily be in the trillions of dollars”. (1)

These results were nothing new to the industry. Fredrick Brooks had already surmised
this in his best selling and luminary book ‘The Mythical Man-Month’, first published in
1975. Brooks worked for IBM in the sixties and seventies developing large application
systems at a time when system development was globally confined to the large corporate
business entities (such as IBM) that could afford the costs associated these endeavors. In
his book, Brooks offers a myriad of reasons why failures occurs. Chief among them, he
argues, is that some systems are actually faulty from the get go. He uses the term
‘conceptual integrity’, which means that end result is a system that is easy to use because
the objective of its designers have been fully met. He says that the purpose of writing a
program is to make a computer easy to use. He writes, “Because the ease of use is the
purpose the ratio of function to conceptual integrity is the ultimate test of a system
design.” (3). To further illustrate this point, he compares two systems (OS/360 and the
Time-Sharing system for PDL – 10). Function, he says, has always been a measure for
excellence for the OS/360 designers because it had the most functions. On the other
hand, simplicity and spareness was the measure for excellence of the Time-sharing
system. He argues that when both were held up for comparison, each was found wanting,
obtaining half of its true goal. This, he reasoned, was because they were not
straightforward. This in turn, compromises ‘conceptual integrity’, the objectives of both
groups’ systems designers. The end result did not fully manifest itself in the final product
of both teams. He concluded that ease of use of the product by the end user shows that
the conceptual integrity has been maintained throughout development. This argument
holds true today. The Standish report survey mentioned previously indicated this to be
true. Half the projects lost failed to meet their objective and requirements.

Another factor for failure, Brooks argues, is a “lack of calendar time.” (3) This is a
euphemism he uses in chapter two of his book to broadly refer to the time constraints and
the overall problems that a particular system project encounters throughout its
development life cycle. In this chapter, he says that “All programmers are optimists.” (3)
This reason alone has a more profound effect on the development of systems projects
than most people give it credit. Programmers and developers have a natural human

instinct to think that they can do a project faster than they actually able to do so. Many
assume that the project will be smooth and they do account for certain aspects of project
design like implementation the system but fail to so for others. What effect will the new
system (To – Be) have on the current application (As - Is) residing in that domain? How
long will debugging take? Fixing a defect, he says, has a substantial chance of
propagating other errors and defects thus lengthening the project time estimates. Because
of this, he argues, most project stakeholders cannot accurately estimate how the project
will progress and therefore make poor assumptions regarding the whole project progress
from the beginning to the completion date. He further argues that when projects are late
for whatever reason, the natural inclination of most managers is to add more people. He
strongly discourages against this in what he simply calls Brooks law, “Adding manpower
to a late software project makes it later.” (3) This happens because adding more
manpower means that tasks already assigned have to be repartitioned and assigned to
others. This means that “some work already done will be lost and the system testing
(semantic and logical) will have to be lengthened.” (3) Adding extra people to a project
also means that they have to be trained in order to bring them up-to-date and familiarize
them with the status and goals of the project. The system development life cycle (SDLC)
is today defined “as the process of understanding and determining how an information
system project can efficiently support a business need; be designed effectively, built in
the same manner, and delivered to its users in a timely manner in order to satisfy those
needs.” (4). The late delivery invariably results in huge cost overruns that make the
project much more expensive than what was originally budgeted. More over, this late
delivery may render the whole project obsolete. This occurs when the overall business
need change during the time period it takes to design, build/develop and deliver the
system to its client/s, end-user etc. This will invariably make it hard for a client/end-user
to satisfy their client/customer needs. This can and often causes bad customer relations,
which in turn, can prompt a client to take their business elsewhere.

Another reason of failure, according to Brooks, is that the technology base on which one
builds a system, is inexorably advancing. This means that by the time one is ready to
implement the system, it is delivered with fewer features than the end-user has to have in
order to run their business and/or endeavors competitively and in a cost effective manner.
This holds true today, for example, because of the rapid development of faster chips in
recent years. The causal effect of this is the availability of robust, efficient and cost
effective hardware components (hence the explosion of the PC market) leading to the
dramatic reduction of software development costs. This has created an intense and
competitive information systems market as the number of service providers has increased
exponentially. Brooks notes that “more and more vendors offer more and better software
products for a dizzying variety of application.” (3) Limiting a project size because of
huge memory costs is not a major issue today as it once was. Project complexity today,
is of more concern to developers when it comes to project size as opposed to memory
allocation.

Having come to these conclusions among others, Brooks puts forth a series of
suggestions that have played a large role in the system development world and
organization management in general. In chapter three, he suggests that one has to

assemble a team of expert professionals each, proficient in their field of expertise, in
order to get a systems project done efficiently and on time to meet the users need. He
endorses a proposal put forth by Harlan Mills (a fellow developer and authority in the
software engineering field) that suggests assembling a project team with the same
precision and preparation as ‘a surgical team rather than a hog butchering team.’ (3) Mills
proposal supports the idea that instead of having many trying to solve a project in an ad-
hoc manner, they should be organized in a structured manner from the chief programmer
(referred to in this analogy as the head surgeon) to an administrator (who oversees the
project budget, people contractual obligations etc). This is also true of any business entity
that wants to successful and profitable. One has to have capable staff, experienced and
well trained in their respective fields, to do so.

Having a capable staff, however, does not guarantee success if there is no communication
among the project members. Brooks uses the Tower of Babel analogy to emphasize the
importance of communication in any given environment. It is known that the building of
tower (Babel) to Heaven project that man attempted, failed when God made Man speak
in different languages. Brooks used this scripture analogy to illustrate the dire
consequences of a lack of communication and organization in a software development
project specifically and in a business entity in general. As the project proceeds, critical
changes that are vital to the success of the project are not communicated clearly and
effectively or none at all to the rest of the project team/organization. This, the author
argues, causes disastrous delays in project development “because the right hand doesn’t
know what the left hand is doing.’ (3) Brooks’s assertions are true and are embraced by
experts in the business world today. Stephen Robbins, an authority in organizational
management, writes “no organization (in this case, project team) can exist without
communication i.e. the transfer of meaning among its members. It is through the
transmission of meaning from one person to another that information and ideas are
conveyed.” (2)

All these reasons have played an important role in the advancement of software design
and the approaches that one uses to create systems. Different methodologies have been
put forth to assist programmers and designers deliver their projects on time. Use of high
level programming languages has led to improved productivity and more robust
applications. Brooks endorses structured programming because “it frees up the program
from much of its accidental complexity” by replacing the previous ad hoc and
undisciplined approaches. Structured programming introduces the use of formal step-by-
step processes that move the project logically from one phase to the next. The key
advantage to the structured design is that “it identifies system requirements long before
programming begins and it minimizes changes to the requirements as the project
proceeds”. (4) This approach, however, does have a key disadvantage. The design
specifications must be completely specified on paper before the project begins and this
can be very confusing for large projects because the information flow can often muddled.

The constraints in structured programming led to the popularity of rapid application
development or RAD methodologies. This approach continues to be popular today. It
attempts to deliver some parts of the system to its end user quickly. The initial system is

developed using the important and fundamental requirements (version 1). This is refined
extensively and the issues identified are incorporated with new ideas to develop version
2. The process continues until the system is complete or no longer needed. This is called
Phased development. In other cases, a prototype of the first part of the system that the
user will use is quickly developed and implemented. The user and the development team
then get together to refine it iteratively until both are satisfied. This methodology
drastically reduces the project time and gets clients much more involved in the
development of the system. Changes are cost effective and are much easier to make.
This gives the clients a chance to better understand the system and enabling the client to
suggest revisions that bring the system closer to what they expect. These methodologies
take advantage of computer tools such as code generators and CASE tools. Their purpose
is to improve the speed and quality of the systems being developed. However, the
collective advantages of RAD methodologies are also their achilles heel. Their
effectiveness can led to high user/clients expectations which can obscure what is actually
possible.

As effective as the RAD methodologies are, the solutions they provide are constrained
because they focus on a set of processes, how to do them and on the entities or objects in
the user environment. These are hard to distinguish in a real world environment. Hence
the increasing popularity of object oriented programming methodologies (OOP) that have
been around since the sixties when an OOP language Simila was developed but were
considered cost ineffective because of a lack of computational power in the computers of
that era. Objects in OOP contain classes that define all data and process of each object
contained in that class. This methodology allows relationships to exits between different
classes, by encouraging encapsulation and information hiding (which Brooks was once
against). Encapsulation combines the process and data into a single object. Information
hiding requires that only the information needed to use an object should be made
available to want to use it. These concepts are critical because changes made in a
particular part of the system are not propagated throughout the system. OOP allows for
inheritance, which means that classes can reuse attributes and methods defined in other
classes. Since there are many similarities among the many classes in a system,
inheritance allows the classes that are in a hieratical order to be used more efficiently.
The degree of flexibility and tolerance that OOP methodologies provide, suggests that the
future of system development is good. These methodologies are found in most of the
innovations taking place in all sectors of the information system world. They are an
integral part in the development of artificial intelligence. Their ability to decompose
complex project into efficient and manageable modules allows the IS practitioners to
think ‘outside the box’.

In conclusion, one can agree with Brooks the mythical man-month is a fact. Time and
people are not interchangeable. Humans are prone to errors as they progress through their
endeavors. With new technology, one can be much more optimistic than Brooks. With
every new methodology, the industry inexorably continues to make progress in systems
development.

References

1. Standish report (1996) www.standish.com

2. Robbins, S. (1993); “Organizational behavior”, 6th Edition; Prentice Hall, New
 Jersey.

3. Brooks, R (1997); “The Mythical Man-Month”, 7th Printing; Addison Wesley
 Longman, Inc., Reading Massachusetts.

4. Dennis, A., Haley-Wixom, B., Tegarden, D. (2002); “System Analysis
 And Design” 4th Edition; McGraw-Hill, New York.

http://www.standish.com/

	TonyM@parod.com
	References

