
Operating Systems Simulation Applet

Dr. Ronald Marsh
Computer Science Department

University of North Dakota
Grand Forks, ND 58201

rmarsh@cs.und.edu

Joseph Kerian
Computer Science Department

University of North Dakota
Grand Forks, ND 58201

Cory Hanson
Computer Science Department

University of North Dakota
Grand Forks, ND 58201

Abstract

This paper discusses a Java-based operating system simulator developed by students in
the Computer Science Department at the University of North Dakota. The goal was to
develop a Java applet that provides a graphical simulation of select operating system
operations including: CPU scheduling of multiple processes, memory management in the
form of page-fault simulation, and process life-cycle explication. The applet is platform
independent and compatible with any Java enabled browser.

Introduction

An operating system is a program that manages the computer hardware, provides a basis
for application programs, and acts as an intermediary between a user of a computer and
the computer hardware. An operating system can be viewed in either of two ways: user
and system. The user view is what the user can see and do with the computer. The system
view considers the operating system as a resource allocator. A computer system has many
resources (hardware and software) that maybe required to solve a problem: CPU time,
memory space, file-storage space, I/O devices and so on. The operating system acts as the
manager of these resources. Facing many conflicting requests for resources, the operating
system must decide how to allocate them to specific programs.

The goal of this project was to develop a Java applet that provided a graphical
simulation/demonstration of the operation of a hypothetical operating system (system
view). Since the simulation was designed to be used as a teaching tool for future Csci-451
(Operating System I) classes, it designed to be run in most common browsers and was
designed with a simple user interface. Figure 1 depicts the architectural design.

Figure 1. Simulation architecture.

Simulation Details

A process is a program in execution. However, a program by itself is not a process; a
program is a passive entity, while a process is an active entity. Processes need resources
in order to function, including CPU time, memory, data, and access to I/O devices. The
operating system has responsibilities of creating and deleting both system and user
processes. It also needs to suspend and resume process. Finally, a process can be in one
of five states: new, running, waiting, ready, and terminating. As shown in Figure 1, when
a process is newly created it is assigned a randomly generated CPU burst time and a
randomly generated amount of memory (10 pages maximum), goes into the ready queue,
and waits to be executed by the CPU.

The time a process must sit in the ready queue is dependant on the CPU scheduling
algorithms and while there are many different CPU scheduling algorithms, this
simulation uses the round robin scheduler. A round-robin scheduling algorithm attempts
to share the CPU fairly among all process of the same priority currently waiting in the
ready queue. Without the proper scheduling algorithm, a single task can usurp the
processor by never blocking, thus never giving other equal priority tasks a chance to run.
Round-robin scheduling achieves fair allocation of the CPU to tasks of the same priority
by an approach known as time slicing. Each task executes for a defined interval or time
slice; then another task executes for an equal interval, in rotation. The allocation is fair in
that no task of a priority group gets a second slice of time before the other tasks of a
group are given a slice. Finally, the scheduling algorithm must be preemptive in the sense
that if an interrupt (hardware or software) occurs the process must be suspended while the
interrupt handling routine executes. After which the process may be resumed. Since this
is a simulation, we simulated the occurrence of interrupts by the CPU burst time that is
randomly generated each time a process moves into the ready queue. A process will get
the CPU for either the length of the time slice or the length of the CPU burst time,
whichever is less. If the CPU burst time is less, the process is assumed to require I/O and
moves into one of the I/O queues. If the time slice is less, the CPU burst time is reduced
by the time slice time and the process returns to the ready queue.

The operating system is also responsible for keeping track of which parts of memory are
currently being used and by whom. It also decides which processes are to be loaded,
allocates, and deallocates memory space. To improve both the utilization of the CPU and
the speed of the computers response to its users, we must keep several processes in
memory; that is we must share memory.

In a modern computers memory management is done using a method called paged
memory. A page, in virtual memory, is a block of memory with its own virtual address.
Paging increases the memory available to a program by temporarily transferring
(swapping) less-needed parts of the program's working memory from RAM into
secondary storage (hard drive). When a page is needed, it is read back into RAM,
possibly replacing an existing page, which is moved into the secondary storage. This
“juggling” of memory is accomplished by a memory management unit (MMU) and a
page replacement algorithm. By using virtual memory, a computer can run tasks that
exceed the limits of its physical memory.

While there are a several page replacement algorithms, the algorithm used in the
simulation is the Least Recently Used (LRU) algorithm. As a process in the simulation
moves from the ready queue into the CPU it first passes through the memory
management unit. The memory management routine randomly generates a set of pages
that will be required by the process during its current execution period and executes the
LRU page replacement algorithm. With LRU, if there are no empty pages, the page that
not has been used for the longest time is selected for replacement. As implemented by the
simulation, the LRU algorithm:
• Inspects the simulated physical memory – are the required pages already in physical

RAM?

• If they are, allow the process to execute.
• If they are not, generate a “page fault” and then:

o Read the required page from the simulated swap space (hard drive).
o If there is a free frame in physical memory, use it for the page read.
o If there is no free frame in physical memory, select the page not used in the

longest time to be the victim frame.
o Write the contents of the victim page to the simulated disk and change the page

and frame tables to reflect the memory changes.
o Insert the page read in to the new frame.
o Start the user process.

To add some form of realism to the simulation there are 2 types of queues that are
modeled: the ready queue and 3 different I/O queues. Each I/O queue is meant to
represent a different I/O device. By different, we mean devices that have vastly different
“service” times. For example, a computer mouse has a very short service time, while a
disk drive has a much longer service time. Thus, when a process is interrupted (CPU
burst time expended) the simulation randomly decides what type of I/O is required (Main
HD, Printer, or NIC). The process is then sent to the appropriate I/O queue. As Figure 1
depicts, each I/O queue has an associated I/O burst time determination. The I/O burst
time determine routine randomly generates (using different distributions) an I/O burst
time (I/O service time) which each instance of I/O requires. Once the process has waited
the appropriate amount of time it returns to the ready queue and assigned a new CPU
burst time.

Simulation GUI

The applet window has been set at 640 x 450 allowing an applet that is viewable even on
small (640x480) screen sizes. The interface allows the user to stop, start, step through the
simulation, to control the execution speed, and to inspect various other factors, such as
the memory allotment/assignment, and process parameters. Finally, the decision was
made to use swing components for this applet, as opposed to the now outdated awt
components. As a result the main applet extends Japplet, rather than the basic class
Applet.

The applet window is split into three panels, in clockwise order starting in the upper left:
the display panel, the control panel, and the message panel. The display panel is divided
into several subpanels that provide a graphical view of the simulation during execution.
The display panel will be described in more detail later. The control panel contains
buttons for the basic applet controls (start, stop, step, new process creation, simulation
execution speed, and number of steps through the simulation - simulation time). The
message panel contains a scrollable text area and is used to provide simulation status
messages to the user during applet execution.

Figure 2. Simulation interface.

While the control and the message panels provide control and information to the user, the
display panel provides the majority of the information. In the upper left the display panel
provides a display of the memory (swap space and physical RAM) usage. Note that the
simulation assumes there are 16 pages of physical RAM and 32 pages of swap space,
which is the typical configuration for a Linux system. As processes are created they are
assigned a unique color and as processes consume memory the pages assigned are given
the appropriate color. Thus, the user can easily monitor the memory consumption.

In the upper right are 3 scrollable text boxes that represent the 3 I/O queues. As processes
require I/O they are moved into the appropriate I/O queue. This is represented by the
applicable text box displaying the process ID number (PID) of the process. Note in
Figure 1 that under each queue title is the text “<Idling>.” This text indicates that no
process is currently retrieving data from the applicable I/O device. When a process is
actively retrieving data from the applicable I/O device, the process’s ID (PID) is
displayed instead of the text “<Idling>.”

In the lower left is a scrollable text box that represents the ready queue. Again the text
“<Idling>” indicates that no process is currently executing. When a process is in
execution (as is the case in Figure 1), the process’s ID (PID) is displayed instead of the
text “<Idling>.”

The remainder of this panel is used to provide detailed information regarding a process to
the user:
• The PID box displays the process ID of the selected process.
• The status box displays the current status of the selected process.
• The current page boxes display the number of pages currently in RAM verses the

total number of pages allotted to/required by the process.
• The 30 cells below the current page box depicts the current state of the process’s

memory pages – whether they are in RAM, in swap, or if they have even been
assigned yet.

• The scrollable text box in the lower right provides detailed information regarding a
process’s history, including:
1. Ram and Swap Load Timestamps for future use
2. Amount of this page that the CPU has executed.
3. Total time to Load this Page from Disk and time to execute by CPU
4. Simulated IO information
5. Percent Probability of IO for this page
6. Delay (in CPU cycles) until IO is complete

All the user needs to do to display the above information is click on any process in any
queue. The user can also click on any memory page to display the applicable process’s
information.

Conclusion

The Java-applet based operating system simulation that was developed by students in the
Computer Science Department at the University of North Dakota provides insight into the
inner workings of the basic components of an operating system. The simulator allows a
student to watch the operations of a typical operating system and investigate certain
parameters in detail. While the current simulator meets all of the original goals, we expect
to expand the functionality of simulator further.

The current simulator can be executed from the following URL:
http://people.aero.und.edu/~rmarsh/CLASS/CS451/SIMULATION/Computer.htm

References

1. Java, http://java.sun.com/getjava/download.html
2. SIMOS, The Complete Machine Simulator, http://simos.stanford.edu/
3. The Flux Oskit, http://www.cs.utah.edu/flux/oskit/
4. Topsy - A Teachable Operating System, http://www.tik.ee.ethz.ch/~topsy/
5. Nachos, http://www.cs.washington.edu/homes/tom/nachos/

http://people.aero.und.edu/~rmarsh/CLASS/CS451/SIMULATION/Computer.htm
http://simos.stanford.edu/
http://www.cs.utah.edu/flux/oskit/
http://www.tik.ee.ethz.ch/~topsy/
http://www.cs.washington.edu/homes/tom/nachos/

	Dr. Ronald Marsh
	
	University of North Dakota
	Grand Forks, ND 58201

	Joseph Kerian
	
	University of North Dakota
	Grand Forks, ND 58201

	Cory Hanson
	
	University of North Dakota
	Grand Forks, ND 58201

	Abstract
	
	Introduction

	Conclusion

