
WEB-BASED DATABASE ACCESS: A PEDAGOGICAL
STRATEGY

Allan M. Hart and James M. Slack
Department of Computer and Information Sciences

Minnesota State University
Mankato, MN 56001

allan.hart@mnsu.edu, james.slack@mnsu.edu

Abstract

Database textbooks published within the last 5 years or so almost always include a
chapter or two on web-based database access. While this is not surprising given the
obvious importance of the internet, it presents unique challenges to those instructors who
wish to cover this material. First, since it is still necessary to cover traditional database
topics such as ER and EER diagramming, the relational model, SQL, etc., only a limited
amount of time can be devoted to the topic of web-based access. Second, how does an
instructor teach students how to implement a database with web-based access given that
doing so requires some sort of “server side” programming? Not all server side
programming technologies provide a good “fit” for departments with limited hardware
and personnel resources.

In this paper we outline a strategy for meeting these challenges based on JSP and the
recently released version 1.1 of the Java Standard Tag Library (JSTL).

mailto:allan.hart@mnsu.edu
mailto:james.slack@mnsu.edu

1

1. Introduction

A brief look at recently published database texts reveals a trend toward including a web-
based database component in introductory database classes. E.g., [1] includes a chapter
entitled “The Internet Database Environment”, [2] includes a chapter entitled “Web
Technology and DBMSs”, [3]’s chapter 6, entitled “Database Application Development”
includes material on JDBC and SQLJ, [4]’s chapter 14 is entitled “Web Database
Development” , [5] has several chapters devoted to web-based database access, and [6]’s
Part V contains three chapters devoted to web-based access. Even the venerated [7] and
[8] now include material devoted to the topic. While none of this should come as a
surprise to anyone who has witnessed the explosive growth and importance of the
internet, an instructor who wishes to follow this trend in the classroom faces a number of
challenges.

2. Challenges

There are several challenges facing the instructor who wishes to include a web-based
database access component in his/her introductory database class.

1. Because it is still necessary to cover the more traditional topics such as semantic
modeling (ER and EER diagrams), the relational model, normalization, the
relational algebra, SQL, etc., only a limited amount of time can be devoted to
web-based database access. How do you cover a topic as broad as web-based
access in a few short weeks?

2. Teaching students how to implement a database application that includes web-
based access requires some sort of server side programming on the part of the
students. Hence, some sort of server side programming technology must be
chosen. Should it be ASP, Servlets, JSP, PHP, Perl or something else? While
there are many choices available, not all are equally available. During these times
of lean budgets, not all departments have the hardware, software or personnel
resources necessary to allow students to engage in server side programming
experiments with an arbitrary server side programming technology.

3. Once a particular server side technology has been chosen, a web server of some
kind must be chosen. While it’s possible to require students to install, maintain,
and use a web server (Tomcat e.g.) on their own machines, precious time can be
wasted by the instructor who has to explain to his/her students how to do just
that.

2

3. Solutions

In this paper we outline a JSP-based strategy for meeting the challenges noted above. We
have followed this methodology in our introductory database class and have found it to
be a viable approach to incorporating a web-based database access component in that
course. The strategy utilizes the recently released version 1.1 of the Java Standard Tag
Library (JSTL). The JSTL includes a number of facilities for database access and
provides an environment in which a student who has perhaps less than optimal
programming skills can still implement a web-based database application with relative
ease.

4. Scenario

At Minnesota State University, Mankato, our introductory database class consists of a
mix of CS, CIS, and MIS majors with a dose of Business and Management majors
thrown into the mix for good measure. While most of these students have had some
experience with programming, the average student’s experience often consists of a single
CS1 course in either Python or Java. Typically, we split the class into teams of four to
six students. Each team views itself as a database consulting company. This company
has been approached by some business that wants the company to construct an Oracle
database that includes an online shopping cart facility. Each team is thus required to
implement a database application that allows for web-based access. Because the
application involves the selling of some product or products, the database constructed by
a particular team includes the usual Customer, Product, Orders, and OrderLine tables
along with sundry support tables.

We chose this kind of project for our class because it underscores the notion of a
transaction – an important concept for beginning database students and because it also
underscores the important role that the internet has come to play in the database world.
Over the last several years, we have tried several different approaches regarding the web-
based online shopping cart portion of the course.

Initially, we tried an approach in which the students were given a “crash course” in
servlet programming. The online shopping cart, as well as all web pages associated with
the cart, were implemented in servlet code. While the students generally enjoyed this
approach, many found servlet programming to be a formidable challenge – their java
programming skills were simply not strong enough to enable them to master the ins and
outs of servlet programming in a few weeks.

More recently, we have tried an approach in which the students are given a short course
in JSP programming. This approach has met with considerably more overall success than
the servlet-based approach. Most students, even if their java programming skills are not
optimal, have had some background with HTML. Such a student encounters much less
difficulty in understanding basic JSP tags than he or she does in understanding servlet
programming.

3

Most recently, we have supplemented the JSP short course with the JSTL. Because the
JSTL includes simple tags for such important tasks as outputting text to web pages,
iterating over collections of data (shopping cart data e.g.), formatting numbers, dates and
currencies, transforming XML data and interacting with databases, it is an ideal choice
for the type of semester project we require of our students.

5. The Short Course

While no pretense is made that our students will receive a comprehensive overview of
JSP and the JSTL, we do try to ensure that they are exposed to the most important
elements of these technologies.

5.1 Web Applications

The notion of a web application is, of course, of fundamental importance. A web
application’s structure is mandated by the Java Servlet Specification and is perhaps best
explained by the use of the following example:

Figure 1. Web application layout

A web application’s html and jsp files are kept in the sample_webapp folder.
The WEB-INF folder is special for a couple of reasons. First, the contents of that folder
are protected from access by web browsers. Second, WEB-INF contains a special file,
viz. web.xml, that functions as a deployment descriptor, i.e. it contains configuration
information for the web application, an application description, and perhaps other
customization. The classes folder contains any Java class files (servlet or otherwise)
required by the application. The lib folder contains Java Archive (JAR) files; in
particular, if the application involves the JSTL, lib will contain standard.jar and jstl.jar –
the two .jar files that constitute the JSTL.

4

5.2 Scopes

Server side programming involves a concept that is often new to students who have no
previous server side programming experience, viz. scope. A scope defines the length of
time an object is available and to whom it is available. There are four different scopes for
sharing information between pages, requests, and users:

• Page
• Request
• Session
• Application

The default scope (page scope) allows actions on objects placed in it only within one
page. Request scope should be applied to objects that are required in all pages that
process the same request. Session scope should be applied to objects that are to be shared
by several requests from the same user. E.g., a shopping cart object is usually given
session scope. Applications scope should be applied to objects that are to be shared by all
users of the same application. E.g., a “catalog” object that contains information
regarding what products are for sale, a description of the products, the product prices, etc.
might be given application scope. Students need to become thoroughly familiar with
these different scopes and how and why they are used.

5.3 The Expression Language

Originally developed as part of the JSTL, the Expression Language (EL) has, as of JSP
2.0, become part of JSP itself. Syntactically similar to JavaScript, the EL is a language
used for accessing request data and application class data. An EL expression starts and
ends with a delimiter. The opening delimiter is a dollar sign concatenated to a left curly
brace ${. The closing delimiter is a right curly brace }. The following simple example
shows how one can include an EL expression directly in the text of a JSP page:

3 + 2 + 1 = ${3 + 2 + 1}

The browsed JSP page would then have the “output”:

3 + 2 + 1 = 6

The EL contains many of the same elements present in most programming languages. In
particular, it contains the “.” operator for accessing a bean property or Map entry, “[]”
for array access, “(“ and “)” for grouping, “? :” for conditional test, “+, -, *, /, %” for
arithmetic operations, “==, !=, <, >, <=, >=” for relational tests, “&&, || and !” for
boolean operations, “Empty” for null tests and “func(arg)” for performing function calls.

EL expressions can contain variables. A variable can be created by an application or be
provided implicitly by the EL and is a reference to an object. E.g., one might use the JSP

5

action <jsp: useBean> to create an object (perhaps a shopping cart or an item in a
shopping cart) that will be used by a JSP page. The EL contains a set of implicit
variables that provide access to many of the important attributes of a web application.
The following table lists these implicit variables.

Table 1: Implicit EL variables
Variable name Description
pageScope A collection (a java.util.Map) of all page scope variables
resuestScope A collection (a java.util.Map) of all request scope variables
sessionScope A collection (a java.util.Map) of all session scope variables
applicationScope A collection (a java.util.Map) of all application scope variables
Param A collection (a java.util.Map) of all request parameter values as

a single string value per parameter
paramValues A collection (a java.util.Map) of all request parameter values as

a String array per parameter
Header A collection (a java.util.Map) of all request header values as a

single String value per header
headerValues A collection (a java.util.Map) of all request header values as

a String array per header
Cookie A collection (a java.util.Map) of all request cookie values as

a single javax.servlet.http.Cookie value per cookie
initParam A collection (a java.util.Map) of all application initialization

parameter values as a single String per value
pageContext An instance of the javax.servlet.jsp.PageContext class, providing

access to various request data

5.4 JavaBeans

While not absolutely necessary in a JSP page, a bean is, nonetheless, a component that
often is used in a JSP page. Doing so helps to separate presentation logic from business
logic and, so, helps in the adherence to a MVC architecture.1

Creating a bean is a relatively easy matter. A bean is simply a Java class that adheres to
certain coding standards. In particular, a bean class must have a no-argument
constructor. A bean’s properties (essentially the private fields of the class) must be
accessed through getter and setter methods. While not mandated, a bean should also
implement the java.io.Serializable interface so that a bean’s state can be saved and
restored.

The following code, adapted from [9], demonstrates how one might implement a
shopping cart item and a shopping cart. The shopping cart item is not itself a bean but
the shopping cart is:

6

7

Whether the instructor decides to teach students the intricacies of bean programming or
simply provides students with appropriate shopping cart item and shopping cart classes
is, time constraints notwithstanding, not important. What is important is that the student

8

have these classes available, are aware of the methods and data contained in them, and
know how to employ those methods in a JSP page.

5.5 JSTL

The JSTL is composed of five libraries, viz. the core, xml, database, formatting
and function tag libraries. Each tag in a given library has a number of attributes. The
following tables summarize the most important tags available in the core and database tag
libraries.2

5.51 The Core Library

The core tag library provides support for variable management, conditional logic,
imports, looping, output, and URL manipulation. Important tags in this library include
the following.3

The <c:out> tag is used for writing data.

Table 2: <c:out>
Attribute Description Required Default
Value Information to output Yes None
Default Fallback information to output No Body
escapeXml True if the tag should escape XML characters No True

The <c:set> tag is used to save data to memory.

Table 3: <c:set>
Attribute Description Required Default
value Information to save No Body
target Name of the variable whose property should be modified No None
property Property to modify No None
var Name of the variable to store information No None
scope Scope of variable to store information No page

The JSTL has four tags used for conditional logic, viz. <c:if>, <c:choose>, <c:when>,
and <c:otherwise>. The <c:choose> and <c:otherwise> tags accept no attributes. The
<c:if> tag allows one to apply a standard conditional test.

Table 4: <c:if>
Attribute Description Required Default
Test Condition to evaluate Yes None
Var Name of the variable to store the condition’s result No None
Scope Scope of the variable to store the condition’s result No Page

9

The <c:when> tag is used with the <c:choose> tag much like a “case” is used with a
“switch” in Java:

Table 5: <c:when>
Attribute Description Required Default

Test Condition to evaluate Yes None

The core library provides support for two looping tags, viz. <c:forEach> and
<c:forTokens>. The former is used for general data while the latter is used for substrings
of a given string.

Table 6: <c:forEach>
Attribute Description Required Default

items Information to loop over No None
begin Element to start with (0 = first item, 1 =

second item…)
No 0

end Element to end with (0 = first item, 1 =
second item…)

No Last item in the
collection

step Process every step items No 1 (all items)
var Name of the variables to expose the

current item
No None

varStatus Name of the variable to expose the loop
status

No None

The <c:param> tag is used for accessing request parameters.

Table 7: <c:param>
Attribute Description Required Default
name Name of the request parameter to set in the URL Yes None
value Value of the request parameter to set in the URL No Body

5.52 The Database tag library

The database tag library is obviously the library of most interest in our database course.
This library provides support not only for standard database queries (selects, updates,
etc.) but also for transactions.

The <sql:query> tag is used for those queries that return a result set (usually select
queries).

10

Table 8: <sql:query>
Attribute Description Required Default

Sql SQL command to execute (should return a
ResultSet)

No Body

dataSource
Database connection to use (overrides the

default)

No Default
database

maxRows Maximum number of results to store in the
variable

No Unlimited

startRow Number of the row in the result at which to
start recording

No 0

Var Name of variable to expose the result from the
database

No None

Scope Scope of variable to expose the result from the
database

No Page

The <sql:update> tag is used for, you guessed it, updating a database.

Table 9: <sql:update>
Attribute Description Required Default
sql SQL command to execute (should not return a

ResultSet)
No Body

dataSource Database connection to use (overrides the
default)

No Default
database

var Name of the variable to store the count of the
affected rows

No None

scope Scope of the variable to store the count of the
affected rows

No page

The <sql:param> tag is used for those queries where one or more parts of the query need
to be filled in by a parameter.

Table 10: <sql:param>
Attribute Description Required Default

value Value of the parameter to set No Body

The <sql:dateParam> us used like the <sql:param> tag except that the data provided is a
date object.

The <sql:transaction> tag allows the user to formulate groups of <sql:query> and
<sql:update> entries into transactions.

11

Table 11: <sql:transaction>
Attribute Description Required Default

dataSource Database connection to use (overrides the
Default)

No Default
database

Isolation Transaction isolation (READ_COMMITTED,
READ_UNCOMMITTED,

REPEATABLE_READ, or SERIALIZABLE)

No Database’s
default

5.6 Accessing a Database Using the JSTL

Figures 2 and 3 exhibit a database transaction before and after a “valid” transaction and
before and after an invalid transaction:

12

13

Figure 2: Before and after a valid transaction

14

http://hart.cs.mnsu.edu/home/downloads/servletapp

15

Figure 3: Before and after an invalid transaction

The code that generates these figures is adapted from chapter 9 of [11]. There are two
files involved, viz. index.jsp and transfer_funds.jsp. For the sake of brevity, the former is
not displayed here. One can guess from the figures above most of its content. The code
for the latter file is displayed in figure 6. Note the ease with which transactions are
coded.

16

17

Figure 4: Demonstrating Transactions

6. The Server

In section 2 we noted that one challenge facing the instructor who wishes to include a
web-based database access component in his/her database course is the issue of a web
server. Teaching students to install, use and maintain a servlet container like Tomcat is,
while possible, not likely to be feasible in a course in which traditional database topics
are the main focus. We choose to use ServletApp.4 ServletApp is based on Jetty an open
source HTTP server and servlet/JSP container. ServletApp is relatively small (about 2
MB) and its installation, configuration and maintenance requirements are minimal. A
student can install ServletApp on their home machines by simply unzipping it. No other
configuration responsibilities beyond having a recent JDK installed and downloading an

18

appropriate JDBC driver are required. The current version of ServletApp supports the
JSP 2.0 and servlet 2.4 specifications. Meeting these specifications is a requirment for
the use of version 1.1 (the latest) of the JSTL. Using the JSTL a student can construct a
prototype of a web-based database application by mastering a handful of tags from the
JSTL instead of having to master the complexities of servlet programming or some other
server side programming technology.

7. Conclusions

We have tried several approaches in our attempts to incorporate a web-based database
access component in our beginning database course. Initially we tried a servlet-based
approach but found this to be too demanding for students whose programming skills
were, in many cases, less than optimal. A JSP-based approach was attempted in the
Spring semester 2003. This proved to be a big improvement over the servlet-based
approach with many more students expressing interest and excitement about JSP. During
the fall semester 2003 we again used a JSP-based approach with some JSTL thrown in
for good measure. Unfortunately, we were only able at that time, to utilize version 1.0 of
JSTL. During the current semester, we are utilizing the approach outlined in the pages
above. We expect that the simplicity provided by JSTL version 1.1 will finally make the
integration of a web-based database access component in our introductory database
course a pleasant reality for both instructor and student.

8. Resources

Those who are interested in investigating JSTL for possible use in their courses might
find the following books helpful. [10] and [11] are both excellent and provide detailed
information regarding JSTL version 1.0. [12] is concerned with JSP in general and
provides less detailed information regarding JSTL. However, [12]’s coverage is up to
date with JSTL version 1.1.

19

References

[1] Hoffer, J.A., Prescott, M.B. and McFadden, F.R. Modern Database Management.
Sixth Edition. Upper Saddle River, New Jersey: Prentice Hall PTR. 2002.

[2] Connolly, T. and Begg, C. Database Systems. Third Edition. Addison Wesley
Harlow England. 2002.

[3] Ramakrishnan, R. and Gehrke, J. Database Management Systems. Third Editon.
Mcgraw Hill. New York. 2003.

[4] Rob, P. and Coronel C. Database Systems: Design, Implementation & Management.
Sixth Edition. Thompson Course Technology. Boston. 2004.

[5] Ricardi, G. Principles of Database Systems with Internet and Java Applications.
First Edition. Addison Wesley. 2001.

[6] Kroenke, D. Database Processing. Ninth Edition. Pearson/Prentice Hall. 2004.

[7] Elmasri, R. and Navathe, S.B. Fundamentals of Database Systems. Fourth Edition.
Pearson/Addison Wesley. 2004.

[8] Date, C.J. An Introduction to Database Systems. Eighth Edition. Pearson/Addison
Wesley. 2004.

[9] Fields, D.K., Kolb, M.A., Bayern, S. Web Development with Java Server Pages.
Second Edition. Manning 2002

[10] Bayern, S. JSTL In Action. First Edition. Manning 2003.

[11] Geary, D.M. Core JSTL: Mastering the JSP Standard Tag Library. First Edition,
Prentice Hall/PTR 2003

[12] http://hart.cs.mnsu.edu/home/downloads/servletapp

[13] Bergsten, H. JavaServer Pages. Third Edition. O’Reilly 2004

20

Notes
1 I’ve “bitten my tongue” over this claim several times. There are those who would argue (correctly) that
the approach taken in the pages that follow is in direct violation of MVC. They argue that embedding SQL
calls in a JSP page violates MVC and that SQL calls should not appear in the view component. To this I
can only plead “guilty as charged”. However, I would remind such critics that, given the time constraints
in an introductory database class, embedding SQL calls in JSP pages in a prototype web application is a
forgivable sin.
2 For the sake of brevity, we omit the xml, formatting, and function libraries.
3 The summary is adapted from Appendix A of [10].
4 An earlier version of ServletApp was presented at the 36th annual meeting of MICS in Duluth MN 2003.
The current version of ServleApp has grown a bit in both size and capability while still maintaining an
overall simplicity. ServletApp can be downloaded from [12]

