
ESTIMATION OF A SOFTWARE DEVELOPMENT
PROJECT USING COCOMO II

Huanzhong Gu
Department of Computer Science and Operations Research

North Dakota State University
Fargo, ND 58105, USA

Huanzhong.gu@ndsu.nodak.edu

Jingpeng Tang
Department of Computer Science and Operations Research

North Dakota State University
Fargo, ND 58105, USA

Jingpeng.Tang@ndsu.nodak.edu

Vijayakumar Shanmugasundaram*
Department of Math and Computer Science

234 C Ivers, 901 8th St S
Concordia College

Moorhead, MN, 56562
shanmuga@cord.edu

Abstract

This paper describes the intricacies of estimation of a software development
project using COCOMO II estimation/planning software. This COCOMO II estimation
software is used to estimate the effort and schedule required to develop performance-
monitoring software for a company. This performance monitoring software utilizes the
centralized, integrated database system for monitoring the performance of various
departments with in a multidisciplinary company. The purpose of developing such
performance-monitoring system is to eliminate the various standards existed in different
departments and to prevent small, and isolated data information maintained individually
using spreadsheets and personally developed software. The individual requirement of
four major selected departments as well as the requirement of integration with central
database system of this monitoring software is collected. The effort, schedule, and costs
for developing this performance-monitoring software project are evaluated and presented.

Keywords: Software Estimation, COCOMO II.

* Contact Author

INTRODUCTION

In an ever-changing computer technology world, database system has been an
essential part of any company. However, the evolution of the technology have made

mailto:Huanzhong.gu@ndsu.nodak.edu
mailto:Jingpeng.Tang@ndsu.nodak.edu

many companies’ database system obsolete compared to the new advances. Therefore,
many companies have either converted or in the process of converting their database
system to utilize new technologies. Instead of pieces of individualized information
floating around different personal computer in various departments maintained by
individuals, the company we are working with has made commitment and effort to collect
the information into a centralized database system such as Oracle.

However, individualized system still needs to be developed to maintain the
performance, and maintenance monitoring services of these departments otherwise
performed by individuals at their own specified times and standards. Such monitoring
services are meant to provide easy and understandable presentation of the vast data
collected by central database system. These services have to be suitable for each
department. They need to have easy interface and simple, yet accurate performance
information with regarding to either products, or processes, or customers depending upon
the departmental functionalities.

To develop these monitoring services, many software package or high level
programming language can be used. The only constrain is that it should be easy to
communicate with the Oracle database. The software packages considered are Crystal
Report (a reporting tool for large databases), Visual Basic, and other valid options. In
this project, Visual Basic 5, Query type of software, and Report Generator are considered
in comparison. They are rough equivalent of the tools that are likely to be used for
developing these monitoring systems.

In this paper, COCOMO II is used as software estimation and planning software.
It is an improved version of the COCOMO 81 [1] initially developed by Boehm in 1981.
It can be used to make investment or financial decisions involving software development
effort and setting budgets and schedules as a basis for planning and control [2].

METHODS

REQUIREMENTS DEVELOPMENT

Necessary information such as the requirements has to be obtained for estimation
of the effort, schedule, and cost. This information usually would be gathered as official
requirements given by company representatives. However, since the scope of the project
is limited, no official requirements are used. Instead, an interviewing process that
involved essential personnel is conducted to gather as much requirement information as
possible. Those departments that participated in the interviewing process included
departments such as processing, manufacturing, accounting, project accounting, program
manager, and project key lead. Requirements are gathered from these various sources
and noted down. For this project, four main representative departments are used for
estimation. They are processing, manufacturing, accounting, and overall managerial
departments.

FUNCTION POINTS

The gathered requirements are carefully studied to produce size of the motoring
system project for each department. In this project, function points are used to represent
size. This approach is based on the amount of functionality in a software project and a
set of individual project factors [3, 4, 5]. The basic process and steps involved in
converting requirements to function points are discussed as following:
1. Five components of function points are identified and categorized as,

A. Internal Logical Files (ILF)
B. External Interface Files (EIF)
C. External Inputs (EI)
D. External Outputs (EO)
E. External inquiries (EQ)

2. From requirements, list of the number of each of these five components are
determined,
3. For each identified instance of a functional component, the functional complexity is
determined using Table 1, for EQ, EI and EO tables are used, and which ever one gives
the higher value, that value is used,
4. The number of low, average, and high items in each of the five functional categories
are counted,
5. The counts are placed in the appropriate places in Table 2,
6. Multiply and sum to obtain the total unadjusted function points, and that would be the
input to COCOMOII software.

Table 1 Complexities in Function Point Components

Record
Element
Types

Data
Element
Types

Data
Element
Types

Data
Element
Types

1 - 19 20 - 50 51 -
<2 Low Low Low

2 - 5 Low Average High
>5 Average High High

Complexity of ILF and EIF

File types
Referenced
(FTRs)

Data
Element
Types

Data
Element
Types

Data
Element
Types

1 - 4 5 - 15 15 -
<2 Low Low Low
2 Low Average High
>2 Average High High

Complexity of EIs

File types
Referenced

Data
Element
Types

Data
Element
Types

Data
Element
Types

1 - 5 6 - 19 20 -
<2 Low Low Low

2 - 3 Low Average High
>3 Average High High

Complexity of Eos

Table 2. Unadjusted Function Points Table

Low Average High
EI X 3 X 4 X 6
EO X 4 X 5 X 7
ILF X 7 X 10 X 15
EIF X 5 X 7 X 10
EQ X 3 X 4 X 6

COCOMOII Model

COCOMOII post-architecture model is used to develop the estimates. Four
modules are included in the model representing the four departments evaluated. The
assumption for using the post-architecture model is that the project is ready to develop
and sustain a fielded system and the life-cycle architecture is in place. We would be able
to put more accurate information for various cost drivers and thus enable more accurate
estimations. Total of seventeen effort multipliers are used to adjust the nominal effort.
Total of five scale factors are used to account for the relative economies or diseconomies
of scale encountered for software projects of different sizes. All these are maintained the
same for all four modules.

SCALE FACTORS

The scale factors’ settings are shown in Figure 1. Their range of values is from
very low to very high. Precedentedness (PREC) reflects the similarities of this project to
projects that the development team has undertaken in the past. This factor is dimmed to
be very low because the development team that will implement the system has no prior
similar project experience at all.

Figure 1. Scale Factors used in COCOMO II

The team would most likely to be assembled in-house, and in-house programmers
in this case, has not been involved in this type of projects. This indicates that the team
has considerable understanding of the objectives, but moderate related experience and has
considerable need for innovation. Development flexibility (FLEX) refers to the amount of
given in what actually must be developed. It is assumed to be nominal since little
information is available.

The architecture/risk resolution (RESL) is the extension of architecture being
completely specified and major risks being eliminated. The scope of this project has time
limitation for going into details of risk management and thus is assumed to be very low.
Team cohesion (TEAM) is assumed to be nominal. The development team members
would be coming from likely the same department and would have basic teamwork skills.
However, due to lack of team development project experiences in similar situations, even
though they might have worked together before, they still would not get high team
cohesion evaluations but nominal. Process maturity (PMAT) is one of the more
influential factors because it measured different key process areas in a software project
team. These key areas extend from requirement analysis, project planning, to quality
assurance, and team training issues. Since the team is most likely dealing with this type
of project the first time and is far from being a professional development team, the
PMAT factor was given a very low value for representing the low level of process
maturity of the development team.

EFFORT MULTIPLIERS

The effort multipliers’ settings are shown in figure 2. They are grouped into four
different categories: product, platform, personnel, and project. Their ranges of values are
also from very low to very high.

Figure 2. Effort Multipliers used in COCOMO II

Required software reliability (RELY) measures the extent to which the software
must perform its intended function over a period of time. The failure of the developed
system might cause moderate, easily recoverable losses for the fact that if the monitoring
process would fail, even though automatic control would be off, the human control can
still be assumed. The failure might cause some losses, but not considerable enough to be
a major concern. Therefore, nominal value is assigned. Database size (DATA) is
determined to be nominal as well in this case because the ratio of bytes in the testing
database to SLOC (source lines of codes) would most likely between 10 and 100 and
resulting in a nominal case. Product complexity (CPLX) and reusability (RUSE) are
assumed to be nominal by virtual of estimation. The documentation (DOCU) suitability
for life-cycle needs is given a nominal value because right-sized documentation is
assumed. However, because the team would communicate more using other means of
tools such as telephone, emails, team meetings, the documentation is more formed to
show managers in this case. Therefore, nominal amount of documentation is assumed.

Execution time (TIME) and storage (STOR) constrains are not as significant in

this case, hence we assume both nominal values. The platform volatility (PVOL) refers
to the change of hardware/software these services calls on to perform their own tasks. In
this company, the major change is not expected in a 12 months period while minor
changes might occur monthly, therefore, a low value is assigned representing low
volatility.

Since our programmers have previous programming experience and have worked

on other projects related to using their analytical ability as well as programming ability,
the analyst capability (ACAP) and programmer capability (PCAP) multipliers are
assumed to be nominal. However, we believe that they have relatively high applications
experience (APEX), platform experience (PLEX), and language and tool experience

(LTEX) because the amount of years they have been working on programming projects.
Personnel continuity is considered high because annual personnel turnover for this job
function was low (< 3% per year).

Toolsets used by the developers would be basic lifecycle tools with moderate
integration, and thus bear the nominal value. The multisite development multiplier is set
to be high because the degree of site collocation and communication support is relatively
high.

The overall required development schedule (SCED) measures the schedule
constraint imposed on the project team developing the software. The ratings are defined
in terms of the percentage of schedule stretch-out or acceleration with respect to a
nominal schedule for a project requiring a given amount of effort. In this case, we have
no detailed discussion with regarding to stretch out and thus, assume a nominal value.

RESULTS AND DISCUSSIONS

The results of the function points’ evaluation for the manufacturing engineering
department are shown in Figure 3.

Manufacturing Engineering Department
Extracted from requirements extracted from interview

Data Functions:

List of Internal Logical Files:
1. Product List

o Product Type
o Product Name
o Product Cost
o Time to Produce
o Current Quantity
o Time Duration
o Specification
o Special Notes
o Service Lines
o Expired Time
o Error Rates
o Placement Rates

List of External Interface Files
1. Equipment List
2. Line Specific Process Data File
3. Customer List

Transactional Functions:

List of External Inputs:
1. User Commands (text boxes)
2. Buttons
3. User Login/off
4. Product selection list

List of External Outputs:
1. Production graphs (indicator)
2. Warning signs for outdated products
3. Product service line change
4. Product specification change
5. Updating of product list
6. Administrator login/off
7. Other screens (may be 4 to 5)

List of External Queries:
1. Product selection
2. Report generation

Figure 3. Function point counting procedure for a particular department

The list of the components and appropriate tables for constructing function points are
shown in Table 3. Twenty percent are added to all the obtained function points adjusting
for any missed components due to unspecified requirements. The unadjusted function
points for input modules in COCOMO II are 102, 101, 182, 151 for processing,
manufacturing, accounting, and managerial departments respectively.

Table 3. Constructing Function Points

Internal Logical File

Logical File Data Element Types Record Element Types Complexity
1 12 3 Low

External Queries

External Query File Types Referenced Data Element Types Complexity

1 < 2 12 Low
2 < 2 12 Low

External Interface Files

Logical File Data Element Types Record Element Types Complexity
1 9 3 Low
2 5 3 Low
3 10 - 20 2 Low

External Outputs

External Outputs File Types Referenced Data Element Types Complexity

1 < 2 6 - 19 Low
2 < 2 6 - 19 Low
3 < 2 6 - 19 Low
4 < 2 6 - 19 Low
5 < 2 6 - 19 Low
6 < 2 1 - 5 Low
7 < 2 1 - 5 Low
8 < 2 1 - 5 Low
9 < 2 1 - 5 Low
10 < 2 1 - 5 Low
11 < 2 1 - 5 Low

External Inputs

External Inputs File Types Referenced Data Element Types Complexity

1 < 2 5 - 15 Low
2 < 2 1 - 4 Low
3 < 2 1 - 4 Low
4 < 2 5 - 15 Low

Unadjusted Function Points

Low Average High
EI (4) X 3 X 4 X 6
EO (11) X 4 X 5 X 7
ILF (1) X 7 X 10 X 15
EIF (3) X 5 X 7 X 10
EQ (2) X 3 X 4 X 6

Total Unadjusted Function Points: 84

Input for COCOMO II: 84 * 1.2 = 101 (20% more due to other uncounted ones that
might rise when more thorough requirements review can be completed)

COCOMO II post-architecture is run three times with the 4 modules representing
these departments for Visual Basic 5, Report Generator, and Query type of Software.
COCOMO II generated total of four phases for each software development cycle. They
are plan & requirement, product design, programming, and integration and test. Cost per
person month is estimated at $8000. The project schedule per phase, effort per phase,
cost per phase, effort per module, and cost per module for all three languages are
generated. They are summarized in the Tables 4-7. Table 4 lists effort (in person
month), schedule (in months), and cost per phase (in dollars) for all three languages tools.
The query software shows lowest amount of effort (15.5 person month), schedule (10.5
months), and total cost ($123,366). The report generator is the highest at 132.6 person
month, 22.1 months, and a cost of $1,060,587. However, in this case, the report
generator that is included in COCOMOII calibration models probably would not be
comparable to something like Crystal Report. The Visual Basic estimates, would give
better representation of the current software available technology. For all three
languages, programming phase has the largest percentage of four phases in terms of
effort, schedule, and cost.

 Table 5 through 6 shows the estimates for three different software tools per module
versus per phase. The accounting department has accounted for the largest percentage of
development effort for all three languages tools. It would take 14.42, 8.9, and 47.97
person months for developing the monitoring services in accounting department using
Visual Basic, Query Software, and Report Generator respectively.

Table 4. Effort, Schedule, Cost Per Phase for Three Different Software Tools

Visual Basic
(14,587 SLOC)

Query Software
(6,539 SLOC)

Report Generator
(40,240 SLOC)Phases

Effort Schedule Cost Effort Schedule Cost Effort Schedule Cost
Plan &
Requirement 2.6 2.3 $20,868 1.0 1.6 $8,071 8.7 3.7 $69,384

Product
Design 6.3 3.1 $50,679 2.5 2.2 $19,600 21.1 4.8 $168,504

Programming 22.4 6.3 $179,395 8.9 4.7 $71,173 71.5 8.8 $572,345
Integration
and test 8.5 2.9 $68,040 3.1 2.0 $24,523 31.3 4.8 $250,353

Total 39.8 14.6 $318,983 15.5 10.5 $123,366 132.6 22.1 $1,060,587

* Effort is in terms of person month, schedule in months

Table 5. Estimates per Module for Visual Basic

Visual Basic
(14,857 SLOC)Phases

Processing Manufacturing Accounting Management
Plan &
Requireme
nt

0.53 0.52 0.94 0.61

Product
Design 1.28 1.27 2.29 1.49

Programmi
ng

4.54 4.5 8.11 5.26

Integration
and test 1.72 1.71 3.08 2.00

Total 8.07 8.0 14.42 9.36
% Total
Cost 20.3% 20.1% 36.2% 23.5%

Table 6. Estimates per Module for Query Software

Query Software
(6,539 SLOC)Phases

Processing Manufacturing Accounting Management
Plan &
Requireme
nt

0.2 0.2 1.8 0.62

Product
Design 0.5 0.5 1.79 0.62

Programmi
ng

4.54 0.89 3.22 1.11

Integration
and test 1.72 0.57 2.09 0.72

Total 6.96 2.16 8.9 3.07
% Total
Cost 20.3% 20.1% 36.2% 23.5%

Table 7. Estimates per Module for Report Generator

Report Generator
(40,240 SLOC)Phases

Processing Manufacturing Accounting Management
Plan &
Requireme
nt

1.75 1.74 3.14 2.03

Product
Design 4.27 4.23 7.62 4.94

Programmi
ng

14.51 14.37 25.89 16.78

Integration
and test 6.35 6.28 11.32 7.34

Total 26.88 26.62 47.97 31.09
% Total
Cost 20.3% 20.1% 36.2% 23.5%

CONCLUSION

The estimates are established for 4 identified departments with different software
tools. The realistic estimate would require 39.8 total person month, 14.6 months, and at a
cost of $318,983 to implement the monitoring system for these departments utilizing the
central Oracle database. These figures are preliminary, further requirement analysis, and

team interview could provide even more accurate estimates and provide a workable
project scope.

REFERENCES

[1] B. Boehm (1981). Software Engineering Economics. Prentice Hall, Englewood Cliffs,
N.J.
[2] B. Boehem, C. Abts, A. Winsor Brown, S. Chulani, B.K. Clark, E. Horowitz, R.
Madachy, D. Reifer, B. Steece (2001) Software Cost Estimation with COCOMO II,
Upper Saddle River, N.J.
[3] C. Behrens (1983). Measuring the Productivity of Computer Systems Development
Activities with Function Points. IEEE Transactions on Software Engineering.
[4] J. Kunkler (1985). A Cooperative Industry Study on Software
Development/Maintenance Productivity. Xerox Corporation, Xerox Square-XRX2 52A,
Rochester, NY 14644, Third Report.
[5] Function Point Counting Practices: Manual Release 4.0, International Function
Point Users’ Group, Blendonview Office Park, 5008-28 Pine Creek Drive, Westerville,
OH 43081-4899.

BIOGRAPHY OF AUTHORS

Huanzhong Gu is currently a Research Specialist in the Agri&BioSystems
Engineering Department, North Dakota State University, Fargo. He is currently working
on his MS in Computer Science in NDSU. His research interests include image-
processing, software engineering.

Jingpeng Tang received his Ph.D. in Engineering from North
Dakota State University in 2002. He is a Research Associate in the
Department of Computer Science and Operation Research at North
Dakota State University at Fargo. He is currently doing his PhD in
Computer Science under Dr. Kendall Nygard. His current research
interests include; Networks, Artificial Intelligence, Bio
Informatics. He is a member of the ACM.

Vijayakumar Shanmugasundaram is currently working as an
Instructor in the Mathematics and Computer Science Department of
Concordia College, Moorhead, Minnesota. He received double MS
in Engineering and Computer Science from North Dakota State

University. He is working on his PhD program in Computer Science under
Dr. Paul Juell in North Dakota State University. His research interests
include program visualization in teaching, scientific visualization, network
and Web based learning. He is a member of the ACM, an affiliate of
IEEE, Computer Society, member of ISCA, member of CUR.

	Jingpeng.Tang@ndsu.nodak.edu
	Vijayakumar Shanmugasundaram*
	Department of Math and Computer Science
	234 C Ivers, 901 8th St S
	Concordia College

	Moorhead, MN, 56562
	Abstract
	
	INTRODUCTION
	
	EFFORT MULTIPLIERS

	RESULTS AND DISCUSSIONS

	Extracted from requirements extracted from interview
	Internal Logical File
	External Queries
	External Interface Files
	External Outputs
	External Inputs
	Unadjusted Function Points
	CONCLUSION
	
	
	
	REFERENCES

	BIOGRAPHY OF AUTHORS

