
The Bootable Cluster CD for
High Performance Computing Education

Paul Gray
Dept. of Computer Science

University of Northern Iowa
gray@cs.uni.edu

Sarah Miller
Dept. of Computer Science

University of Northern Iowa
sarahm@uni.edu

Abstract
This paper confronts the issue of High Performance Computing (HPC) platforms
and their suitability to support much-needed education of HPC topics at the
undergraduate level. One of the most demanding aspects of teaching HPC topics
is the commensurate demand in administrative tasks—from maintenance of user
accounts and configuring software components, to keeping ahead of the latest
security advisories. We focus on the Bootable Cluster CD (BCCD) for its breadth of
HPC software, ease of configuration, and ease of administration.

The BCCD is a self-contained clustering environment in a bootable CD format.
The project was motivated by the need for a drop-in clustering environment for
parallel computing education at community colleges and primarily undergraduate
institutions (PUI's). Unlike research institutions, where dedicated
clustering resources have the benefits of full-time support and administration
staff, the support for hardware and the ongoing administration of clustering
environments is a significant resource drain on community colleges and PUIs.

However, these days student labs with Windows operating systems are
becoming universally available for class-time use. The Bootable Cluster CD
project was put forward to leverage these environments so as to provide a
convenient, non-destructive (no installation required), pre-configured
clustering environment—providing PVM [6], MPICH, OpenMosix [1], compilers, and
graphical debugging tools—and to “leave no trace'” when the host computer
system is allowed to reboot normally.

In this way, the BCCD project offers a drop in solution that requires no
dual-boot configurations, minimal system configuration, no ongoing
administration, and an extremely robust on-demand development environment.
This paper will describe the flexibility inherent in building the BCCD,
describe its use at SuperComputing for supporting workshops on High Performance
Computing Education, and tips for effective usage in concert with the IEEE/ACM
Curricular Guidelines for Computer Science programs [4].

Introduction

The BCCD is a bootable CD image that boots up into a pre-configured distributed
computing environment targeted toward HPC Education (HPCE). The BCCD project
was motivated by numerous factors that are present at most undergraduate institutions;
namely lack of available clustering resources locally, lack of funds to secure a dedicated
clustering resource, and lack of staff to administrate and support the additional aspects of
a true clustering environment (such as schedulers, image synchronization, etc.). The
BCCD image was not put together for the intention of building HPC environments, but
rather environments for HPC education.

Based upon the motivations above, the intended use of the BCCD is to be able to walk
into an open laboratory of computer systems1, boot up the CD, and instantly have a pre-
configured distributed computing laboratory. The instructions for classroom use of the
BCCD image are relatively straight forward:

1. burn it to a CD
2. put it in your CD tray
3. reboot
4. follow on-screen instructions
5. repeat steps 1—4 for all machines that you'd like to have in your lab or cluster

This image boots up into a self-contained, “non-destructive” environment that allows the
user to build virtual machines from other systems that are similarly booted, not to mention
build and run all types of parallel paradigms (described later in this document). The non-
destructive aspect of the BCCD means that the software is never installed to the
workstation's hard drive and that no multi-booting operating systems is required. From an
administrative standpoint, this is a win-win situation for supporting a clustering
environment.

Built around the GNU/Linux operating system and distributed under the version two of
the Gnu Public License, the BCCD system is able to support a wide breadth of hardware
support and a wide selection of applications. A wide breadth of hardware is supported at
this time, and additional hardware support is added regularly. The BCCD contains over
1400 applications ranging from a wide selection of editors, web browsers, mathematical
tools, graphing programs, networking utilities, and even a game or two. In addition, there
is an abundance of compilers, debuggers, profiling libraries, and visualizing applications
for parallel programs. It is this breadth of applications geared toward HPC that makes the
BCCD unique.

A BCCD image is built dynamically using predefined Makefiles, GNU make, and web-
fetched source files. In this way, the standard BCCD image can be customized to suit the
needs of one's local institution by simply modifying the corresponding Makefiles. All of
the sources required to build a BCCD from scratch are available through CVS checkout
or source tar file from the project web site http://bccd.cs.uni.edu.

1 Currently, only i386-based systems are fully supported. A PPC (Macintosh) is also under
development, and should be released by third quarter 2004.

The remaining portion of this document describes the design goals, the makeup, the
similarities and differences with other HPC platforms, and the historical usage of the
BCCD in the context of national workshops for HPCE. The descriptions and figures
used to illustrate the functionality of the BCCD clustering environment in this document
were taken from development snapshots of the BCCD version 2.2 CVS tree.

BCCD Goals & Objectives

The primary design goals of the BCCD are
i. Breadth of hardware support.
ii. Acclimation to arbitrary network environments.
iii. Ease of configuration through customized scripts and pre-configured software

packages.
iv. Ample packaged examples and demonstrations for extensive investigations into

core distributed computing concepts.
v. Ease of customization to tailor the image for local needs.

The BCCD derives its breadth of hardware support from the extensive support of the
GNU/Linux operating system. Automatic configuration of hardware is accomplished
through the discover and hotplug hardware configuration utilities. These utilities are
similar to the plug-and-play paradigm which automatically configure hardware during the
boot-up process. By default, the BCCD uses the VESA frame buffer compatibility mode
to support high-resolution (non-accelerated) graphics. This allows support for the most
common video mode supported by standards-compliant video cards.

Networking infrastructures vary from institution to institution. In order to support the
most arbitrary of networking environments, the BCCD includes a multitude of networking
utilities. The environment most amenable to configuration of a BCCD clustering
environment is one that has pre-configured DHCP and DNS services with resolvable
reverse-lookup support (which is required by the MPICH and LAM [3] clustering
environments). However, in the absence of these services, the BCCD supplies, among
numerous other networking services, configurable DNS and DHCP services.

The most arduous aspects related to the utilization of HPC environments in an educational
setting are configuration, administration (of software packages), and security of the
environment. Clustering applications and environments, such as PVM, MPICH [7], and
the openMosix tools, boot up pre-configured and ready to use. Customized scripts
automate the tasks of connecting together your BCCD-based workstations. In general,
customization and configuration are part of the build processes instead of the run-time
system, which saves time and energy in administration. In turn, this translates to more
time spent on HPC education than on environmental concerns. And, unlike a dedicated
clustering resource, once the system on which the BCCD resides on is rebooted, it reverts
back to the operating system of the original host.

On every BCCD image, there exists several pre-packaged examples of parallelism. From
Fortran-based PVM programs to C++ based visualizations in MPI, the default user
environment contains illustrated programs that can be immediately built with a 'make'

command and subsequently run in the respective parallel environment. Moreover, there
are several visualization applications for displaying, debugging, and viewing the
interactions between the components of these example programs. Figure 1 below shows
an example of upshot being used to visualize messages, CPU time, communication, and
the overhead of an MPI-based program found on the default BCCD image.

Figure 1: The upshot program being used to visualize messages, CPU time, communication,
and the overhead of an MPI-based program found on the default BCCD image.

Finally, the BCCD project leverages the 'gar' [9] system for building an entire BCCD
image completely from net-fetched sources obtained during the compilation process. 'Gar'
is a mixture of the BSD 'ports' system, Linux From Scratch (LFS), and the Gentoo Linux
'emerge' process. Using make, autoconf, and wget as the main building tools, gar can put
together an entire BCCD image from Makefiles available from the BCCD CVS tree. This
allows end-users to customize their images during the build process for specific needs of
the runtime system.

BCCD and Other Paradigms

There are several clustering paradigms and implementations to choose from when deciding
on a parallel computing environment for HPC education. They range from the overly
simple to the overly complex in terms of application support, ease of configuration, the
installation process, and maintainability of the environment. The three main solutions
involve building a cluster from scratch, clustering distributions, and dynamic (bootable)
environments.

 A modest, viable approach to setting up a clustering environment that continues to be
available to researchers and educators is to purchase commodity off-the-shelf (COTS)
components and to build a cluster entirely from scratch. After sufficient testing,
troubleshooting, and tuning, this often produces a very capable computational
environment. Others, the authors included, have sought out capable “second-hand”'
systems that have reached the “end-of-life” in terms of production use. Systems that have
performed well in production for one to three years still possess considerable educational
value for HPC education. The drawback of this approach is the considerable time and
effort involved from start to the final environment. Even with the final environment in
place, updates and maintenance of the environment require considerable amounts of time.

Clustering distributions, such as OSCAR [5] and NPACI-Rocks [11], add on or integrate
with standard Linux distributions. The benefit of this approach derives from pre-
configured packages and cluster administration tools. Like the build-from-scratch
method, this approach requires dedicated resources.

Finally, the dynamic environments, which include the BCCD as well as CHAOS [8],
PlumpOS [13], ClusterKnoppix [12], and LOAF (Linux On A Floppy) [2], allow for a
drop-in clustering environment. These drop-in clustering environments are non-invasive,
in the sense that there is no installation of software to the hard drive. Each environment
exists only while the temporary media is booted. In general terms, CHAOS, PlumpOS,
and LOAF provide dedicated openMosix environments, and one cannot introduce new
software or clustering applications to the environment. The BCCD, on the other hand,
provides a multitude of parallel environments. In addition to openMosix, the BCCD
includes MPICH, LAM-MPI, PVM, and the C3 tools. Another distinguishing feature
about the BCCD is that it supports unique user accounts.

Components of the BCCD

This section describes the software and applications that are available on the BCCD. For
starters, the BCCD version 2.2 includes:

• openMosix version 0.3.5 and openMosixView [10] version 1.5

• PVM version 3.4.4

• X-PVM version 1.2.5

• MPICH version 1.2.5.2 (MPICH 2.0 available as an option)

• LAM-MPI version 7.0.4

• C3-tools version 4.0.1

• gcc, g++, gcj, g77, the GNU C, C++, Java and Fortran compilers

• mpicc, mpi77, mpiCC, mpic++

• hcc, hcp, hf77, and various lam tools

• xmpi version 2.2.3b8

• upshot being used on the BCCD to show a parallelized ring-based communication

• XFree86 version 4.3.0

• many other network diagnostic tools

OpenMosix, the openMosix user-land tools, and openMosixView together form an
environment that extends kernel-level process-based parallelism. The openMosix
environment is based upon a process-based, farming model of parallelism. Process
migration is transparent and managed by the kernel. Figure 2 shows an example of
process migration using the openMosix model.

Figure 2: An example of process migration using the openMosix model.

PVM and the accompanying graphical visualization tool XPVM are based upon the
process collection model of parallel computing, where interprocess communication is
supported through socket-based connection. Users can interact with the PVM
environment through the PVM console or from the command line for PVM-aware
applications. Figure 3 shows PVM being used on the BCCD to join together four BCCD-
based nodes in an illustration of PVM's group-based communication model. The graphical
representation of the process is conveyed using XPVM. XPVM shows interprocess
communication, processes blocking for messages, message queues, process computation,
PVM overhead, and many additional PVM-related aspects of the parallel computation.

Figure 3: PVM being used on the BCCD to join together four BCCD-based
nodes in an illustration of PVM's group-based communication model.

MPICH has a similar processed-based model of parallelism. Graphical tools to visualize
MPICH programs include upshot. Upshot is based on tcl/tk. While the newer version of
upshot, jumpshot, is part of the MPE package (the message-passing extensions of
MPICH), it requires a specific version of Java. However, the standard JDK cannot be
included on the BCCD due to licensing restrictions. Figure 4 shows upshot being used on
the BCCD to show a parallelized ring-based communication example.

While MPICH is the default MPI environment of the BCCD, LAM-MPI is also available
for those that prefer a daemon-based MPI environment. The BCCD includes XMPI,
which is maintained by LAM-MPI developers. Scripts are provided on the BCCD image
to switch between MPI environments so those that prefer one environment over the other
are not constrained by the default choices. Figure 5 shows a LAM-MPI process as
visualized through XMPI.

The Cluster Command and Control (C3) tools consist of numerous cluster administration
scripts written in Python. Examples of the C3 tools include cexec (used to execute a
process on all nodes in the cluster) and cpush (used to push files out to the nodes of the
cluster). These tools help to main consistency across the nodes of the cluster when
modifications are made to the environment.

The BCCD includes the latest version of gcc 3.2.3. Included in the gcc package are the
g77 (Fortran), gcj (Java), and g++ (C++) compilers. Optionally, the Ada compiler can be
included if desired. These compilers provide the foundation for the MPI-based wrapper
functions hcc, hcp, hf77, mpicc, mpi77, mpiCC, and mpic++.

Figure 4: upshot being used on the BCCD to show a
parallelized ring-based communication example.

Figure 5: A LAM-MPI process as visualized through XMPI.

Usage of the BCCD

The BCCD has been used for several workshops on HPCE over the past year. Week-long
workshops, supported by the National Computational Science Institute, were held at
Washington University in St. Louis, Prairie View Texas A&M, and most recently during
SuperComputing 2003 in Baltimore, Maryland. These workshops, sponsored by the
National Computational Science Institute (NCSI), are targeted at instructors from PUI's
and the upper-level high school grade levels. In the upcoming year, NCSI workshops in
cluster computing education will take place at Bethune Cookman College, the University
of Oklahoma, and SuperComputing 2004 (Pittsburgh).

The flexibility and reliability of the BCCD image was put to the test at SuperComputing
2003. Several afternoon workshops and tutorials on MPI programming were scheduled,
but the MPI environment had not been configured on the machines being used in the
tutorial rooms. These machines were laptops, configured to dual boot between Windows
XP and RedHat 9.0. The difficulty in setting up the MPI environment centered around
incompatibilities and missing features in the MPICH RPM packages and the RedHat 9.0
distribution. However, using the BCCD approach, these laptops were used to support a
distributed-computing environment within minutes using the wireless networking
infrastructure of the Baltimore Conference Center. During these workshops, the laptops
were often reconfigured and the environment was repartitioned so as to support
“miniclusters” of four and eight nodes. This repartitioning was used to isolate participant
applications and to facilitate performance benchmarking. The wide variety of applications,
including text editors, compilers, debuggers, graphical tools, customized scripts, and
networking applications, made the BCCD approach an ideal environment for the
SuperComputing 2003 tutorials.

The common usage scenario for using the BCCD as an instructional environment begins
with a single instructor and a classroom of students, one per workstation. Each student
begins by booting their workstation to the CD drive. If the system is not configured to
boot to the CD drive, it is necessary to modify the system's BIOS. Or, if the system
permits booting from a floppy drive, the student can create a floppy image that will boot
the system to the CD drive. At the initial “splash screen” of the boot process, the user is
offered a boot prompt. At this boot prompt, users can customize the boot-up behavior;
specifying screen resolutions, kernel parameters, and different initialization levels. In most
situations the default parameters are acceptable and the system boots automatically.
Figure 6 shows the initial splash screen where users can enter these kernel parameters.

One aspect of the BCCD that is unique among the dynamic clustering environments
mentioned above is the support of a user account. The BCCD environment does not
enroll all capable hosts automatically. Rather, individual users must take a number of
steps in order to enroll their resources into the clustering environment. This is especially
significant for the instructor's resources. By adopting an opt-in approach to system
resource utilization, users are not able to access or enroll the participation of the
instructor's system (or each others systems) until explicitly permitted to do so. To support
the separation of user privileges, the user is prompted for a password as part of the system
initialization process. This password-protects the local system user account. In addition
to password protection, unique DSA and RSA keys are generated for the user. These

keys will subsequently be used to support the distribution of applications over the parallel
environment. Figure 7 shows the generation of both the public and private key pairs and
the solicitation of the user's password.

Figure 6: The initial splash screen where users may enter kernel
parameters and indicate special initialization sequences .

Figure 7: Generation of both the public and private key pairs
and the solicitation of the user's password.

Another part of the initialization process revolves around configuration of the network,
which is a critical component to support of distributed computing. Following
configuration of the network, the user is prompted to log in with the previously-specified
password. Upon logging in for the first time, the user is prompted to start the BCCD
pkbcast (public key broadcast) program as part of the cluster pre-configuration process.

Once logged in, the user has numerous example programs already located in the home
directory. If a graphical mode is desired, the user may issue startx at the command line to
bring up the X Window system. In the X Window system, numerous graphical editors and
distributed systems profiling applications are available through the menu system with a
simple mouse click on the desktop. Figure 8 shows the login prompt along with the
'/etc/issue' message of the standard BCCD image.

Figure 8: The login prompt along with the '/etc/issue'
message of the standard BCCD image.

By default, a user's workstation resources are isolated. No user is permitted to access the
local resources until the local user extends access permissions. Access permissions are
granted through public/private key pairs as mentioned earlier. Distribution of the public
keys occurs through the pkbcast program started upon the user's initial logon. There are
several BCCD-provided scripts that automate this process of extending access rights to
remote users. In this way, very diverse clustering configurations are possible.

Once the environment has been established, the BCCD environment is completely ready
for utilization.

Summary

In summary, with its vast hardware support, acclimation to various networks, simple
configurability, excellent pre-configured demonstrations, and ease of customization, the
BCCD is an all-inclusive, easy solution to the task of teaching HPC concepts. At a
community college or PUI where lack of dedicated clustering tools and lack of full-time
support and administration exist, the BCCD is an easy, non-invasive, drop-in solution for
support of HPC education.

References

1. Bar, M. (2003). Linux Clusters State of the Art. Online document available at
http://openmosix.sourceforge.net.

2. Blomgren, M. and Mota, M. Jr. (2004) openMosixLoaf. Information available at the
project web site http://openmosixloaf.sourceforge.net.

3. Burns, G. Daoud, R. and Vaigl, J. (1994) LAM: An Open Cluster Environment for
MPI, Supercomputing Symposium. Toronto, Canada.

4. Chang, C. Et. Al. (2001) Computing Curricula 2001; Computer Science, Final
Report. IEEE/ACM Curricular Standards available for download at
http://www.sigcse.org/cc2001.

5. Des Ligneris, B., Scott, S., Naughton, T. and Gorsuch, N. (2003) Open Source
Cluster Application Resources (OSCAR): Design, implementation and interest for the
[computer] scientific community. Proceedings of the First OSCAR Symposium
(Sherbrook, May 2003).

6. Geist, G. A., and Sunderam, V. S. (1991) The PVM System: Supercomputer Level
Concurrent Computations on a Heterogeneous Network of Workstations. Proceedings
of the Sixth Distributed Memory Computing Conference. IEEE pp 258—261.

7. Gropp, W. Lusk, E. and Skjellum, A. (1996) A High-Performance, Portable
implementation of the MPI Message Passing Interface Standard. Parallel Computing
22, No. 6, pp 789—828.

8. Latter, I (2003) Running ClusterKnoppix as a Head Node to a CHAOS Drone Army.
Tech Report, Macquarie University, AU. ITSecurity Group Publication.

9. Moffit, N. Et. Al. (2004) The LNX-BBC Project. Information available at the project
web site http://lnx-bbc.org.

10.Rechenburg, M. (2003) openMosixview Online document available at
http://www.openmosixview.com

11.SDSC (UCSD) and Millennium Group (Berkeley) (2003) NPACI Rocks. Information
available at the project web site http://www.rocksclusters.org/Rocks/.

12.Vandersmissen, W. (2004) ClusterKnoppix. Information available at the project web
site http://bofh.be/clusterknoppix.

13.Willis, P. (2004) PlumpOS. Information available at the project web site
http://plumpos.soureceforge.net.

Acknowledgements

This work has been supported in part by a grant from the National Computational Science
Institute (NCSI).

