TEACHING NETWORK PROGRAMMING WITH JAVA

Thomas B. Gendreau
Computer Science Department
University of Wisconsin - La Crosse
gendreau@cs.uwlax.edu

Abstract

Data communications is now a fundamental part of computer systems. Computer
scientists need to learn how to write applications that incorporate data communications.
Java includes classes and interfaces that make data communications programming
accessible to undergraduate computer science students. This paper gives an overview of
the data communication programming features of Java and discusses their use in an
introductory data communications course.



Introduction

At the University of Wisconsin - La Crosse CS 471/571:Data Communications is the
only course in computer networks/data communications offered to computer science
students. The students in the course are primarily undergraduate computer science majors
along with a few computer science minors and a few software engineering graduate
students. The course includes traditional topics such a computer network architecture,
local area network standards, TCP/IP, and computer network applications. The course
also includes a section on developing computer network applications. For many years the
programming in the course was done in C but in past couple of years application
development was taught using both C and Java. This paper gives an overview of the Java
TCP/UDP programming features that have been used in CS 471/571 and discusses some
projects that have been used in CS 471/571.

Java Network Programming Classes

Java provides classes that enable application development on top of both the TCP and
UDP protocols. (Throughout the paper I assume the reader is familiar with standard data
communications terminology. See [1] for a good reference on computer networks). The
basic networking classes include ServerSocket, Socket, DatagramSocket and
DatagramPacket. ServerSocket and Socket are used to exchange data on top of TCP and
DatagramSocket and DatagramPacket are used to exchange data on top of UDP.

The following code sequence creates a TCP socket on which a server is willing to accept
connections and when a connection is established calls a method to provide the service.

ServerSocket myServer = new ServerSocket(portNumber);
Socket aClient = myServer.accept();
provideService(aClient);

The accept call is an example of a blocking statement. The server will be blocked at the
accept call until a new connection request arrives. When a connection is made, a new
Socket object is created and the server uses the new socket to communicate with the
client. Later in the paper we will show an example where a new thread is created to
service the client.

A client process would create a connection to this server by executing the following line
of code.

Socket mySocket = new Socket(server, portNumber)

In this code the variable server is the address of the machine on which the server process
is running. There are a few constructors for the class. Some forms of server machine
identification that can be used include a dotted quad notation or a symbolic name. The
portNumber is the portNumber on which the server is listening. The client will know this



number either because it is well-known, such as port 80 for http, or because it is given as
input to the client program.

For readers familiar with network programming in C, operations such as listen, bind and
connect are encapsulated in the creation of Socket and ServerSocket objects.

Associated with an instance of Socket is an InputStream and an OutputStream. Other
streams can be created from these streams. This is one of the ways in which students find
it easier to use Java instead of C for network programming. Once a connection is made
the network communication looks similar to other external data sources. (Of course
dealing with issues like timeouts and broken connections is more complex than problems
associated with files)

The following sequences of code allow the server and the client from the above code to
exchange messages. After the connection is made the server could wait for a client
message with the following statement.

numBytesReceived = aClient.getInputStream().read(inBuffer);

The server would block at this statement until some bytes arrived from the client.
InBuffer is an array of bytes. Since TCP does not maintain message boundaries, code like
this often appears in a loop. Individual applications often define a message structure or
syntax so receivers know when a complete message has been received.

The client could send a message to the server with the following line of code.
mySocket.getOutputStream().write(outBuffer, 0, size);

OutBuffer is an array of bytes. The code causes size bytes, beginning from position 0, in
outBuffer to be sent to the server.

Java also includes a programming interface to UDP service. The following lines of code
create a socket that can be used to send UDP packets, creates a packet to send, and sends
the packet.

DatagramSocket myDGSocket = new DatagramSocket(myPort);
DatagramPacket mySendPacket = new DatagramPacket(data, data.length,

destinationMachine, destinationPort);
myDGSocket.send(mySendPacket);

To receive a packet on the datagram socket the following sequence of code could be
used.

DatagramPacket myReceivePacket = new DatagramPacket(new byte[size], size);
myDGSocket.receive(myReceivePacket);



After the packet is received methods getAddress and getData can be used to check the
identity of the sender and the contents of the packet respectively.

Since UDP does not guarantee reliable delivery, a receiving process needs to control how
long it will be blocked waiting for a packet. This can be achieved by setting a non-zero
timeout value on the socket. After the timeout value is set if a receive call blocks for
longer than the timeout value, an InterruptedlOException is raised.

myDGSocket.setSoTimeout(numberOfMillisecondsToWait);

Constructors for sockets sometimes use an instance of InetAddress. This class contains
methods that allow the building and manipulation of machine addresses. For example the
following function returns the IP address of a host given its name.

InetAddress.getByName(symbolicName);

With the five classes described above (and with the standard stream classes) students can
write simple network applications.

Other Java Networking Features

The networking features described in the previous section provide a minimal group of
classes and methods that enable programs to exchange messages using either TCP or
UDP. There are many other classes in Java that support networked and distributed
computation. For example Java has an implementation of remote procedure call (RPC)
named RMI (remote method invocation). In CS 471/571 I discuss RMI as an example of
RPC but I have not used it in class assignments. An interesting assignment would be to
have the students write two versions of an application. One version using low level
sockets and other version using RMI. Students could compare the ease of programming
and the performance for both versions.

There are other Java network programming classes such a classes that support http
connections, manage urls, enable multicasting and support multiple implementations of
socket protocols. I have not made use of these classes in CS 471/571.

Threads

A common organization for servers is to accept a new connection and to create a thread
to handle an individual client. Threads are easy to create in Java and by the time students
take CS 471/571 many of them have seen simple examples of threads. The following
sequence of code sits in an infinite loop, accepts connections and creates a new thread to
service the connection.

ServerSocket myServer = new ServerSocket(portNumber);



for (;;) {
Socket aClient = myServer.accept();
MyThreadClass myThread = new MyThreadClass(aClient);
myThread.start();

}

Frequently threads service individual clients without cooperating with other threads so
there is no need to address problems related to maintaining shared data structures. When
threads do need to cooperate (for example in the simple message service problem
described below a shared data structure is maintained to store and modify user names),
they can make use of the monitor like facility Java provides through synchronized
methods.

Shown below is an example of a thread class that could be used to provide a simple echo
service to a client. (I ignored the exceptions that need to be caught for the code to
compile).

public class MyThread extends Thread {
InputStream in;
OutputStream out;
byte[] buffer;
final static int MAXBUFFER = 1500;

public MyThread(Socket s)

{
in = s.getInputStream();
out = s.getOutputStream();
buffer = new bytel MAXBUFFER];
h
public boolean notDone(byte[] buffer)
{
//check if the client is finished
h
public void run () //when the thread is started this method is invoked
{
do {
int size = in.read(buffer);
out.write(buffer, 0, size);
}
while (notDone(buffer));
h



Readers familiar with network programming is C know how useful the select statement is
for a server that has to multiplex between various clients. Early versions of Java did not
support any select-like method so threads were needed to create servers that could service
multiple clients at the same time.

Student Programming Projects

I have taught CS471/571 with Java two times (Fall ’02 and Spring *04). In each instance I
taught both the Java and the C programming interfaces. Most students in the course have
completed a three-course software development sequence using Java before taking CS
471/571. Some of the students had previous exposure to C but for others this was the first
time they had to program in C. I held lectures outside of the regular class time to teach
the basics of C programming. In order for students to have enough time to work on a
project I teach the programming part early in the course. The most recent time I taught
the course I gave one week of lectures on the basics of network architecture followed by
three weeks of lectures on network programming. During the remainder of the course I
lectured on other topics such as LAN standards, TCP/IP, Security etc.. Outside of class
students worked on a couple of “warm-up” programming assignments and the project.
Students had about 6 weeks to complete the project after spending about 3 weeks on
“warm-up” assignments.

The “warm-up” assignments were variations on an echo server [2]. The first time I used
both Java and C in the course, I let students choose the language they wanted to use for
the assignments and project. Not unexpectedly most students did the assignment and
project in Java. One ambitious student wrote the client side applications in Java and the
server side applications in C. I liked that idea so much that the second time I taught the
course with Java I made writing the client side in Java and the server side in C a
requirement for the project.

In the most recent class I gave two “warm-up” assignments. For the first assignment
students could write both the client side and the server side in Java. The client side had a
GUI user interface that allowed the user to choose the protocol to be used (TCP or UDP),
a maximum message size and a maximum message rate. The architecture of the client
side had a thread to manage the user interface, a thread to generate and send messages at
the indicated rate and size, and a thread to receive the echoed messages. If UDP was
chosen as the protocol, the client application had to keep track of the number of messages
lost from the perspective of the client. To show the portability of the application the client
had to be tested on the CS department’s Mac OS X machines and on UW-L’s general
access PCs.

The server side provided a simple echo service in both TCP and UDP. Students were
given a range of port numbers to use and they explicitly created sockets on these ports.
The server implemented a thread-per-client architecture. Each time a new connection was
accepted a new thread was created to handle the client. In the case of TCP, new
connection requests were recognized by falling through the accept statement. In the case



of UDP a “connection” was established by having the client send a message to the server
requesting service. When the server received such a message, it created a new datagram
socket and a new thread to provide the service. The server then sent the port number on
which the thread would receive packets to the client. Because UDP is not reliable,
messages related to the UDP “connection” could be lost. Students had to implement a
simple stop-and-wait protocol to guarantee that the connection was established. (The
application did not have to do error correction for the UDP messages exchanged after the
connection phase. The application only had to recognize when messages were lost. In
practice within the lab machines UDP messages were rarely lost).

For the second “warm-up” assignment the students had to rewrite the server from the
previous assignment in C. This proved to be a challenge for the first-time C programmers
but it was a good exercise to prepare them for the project. It also exposed some issues
that Java hides such as byte order problems.

The project was to implement a simple message service. The assignment gave a general
description of the types service to be provided. These included the following.

Register with the service and receive a user name and password

Send text messages (These must be saved until the recipient deletes them.)
Receive text messages (When users login they should be notified of any new text
messages. While users are logged-in they should be notified about the arrival of
new messages.)

Participate in multi-user chats about particular subjects

Query the system for the names of active users and the names of current chat
subjects

Create a new chat subject

Start a new chat session (there can be multiple independent sessions on the same
subject)

Join a chat session (Users should see the complete contents of the chat session
since it began)

Leave a chat session (A chat session ends when the last person leaves it)

Students work on the project either individually or in pairs. Students must decide what
the user interface will look like and they must determine how the basic operations will
behave in their implementation. For example should sending and receiving text look
more like email or instant messaging or both depending on whether the recipient is
currently logged-on. They must also decide on whether clients will ever directly



communicate or if all messages pass through the server. From this simple problem
statement many different choices can be made.

The first time I used this project all the students completed some parts and about a third
of the students completed all parts. (The Spring 04 students have not yet completed the
project). Students found the project challenging but they seemed to enjoy working on an
application that seemed “real” to them because it look similar to applications they have
used.

Java Versus C

The use of Java in the course has improved the quality of the projects. Students enter the
course familiar with the Java language and with writing GUI user interfaces in Java. This
makes the client side applications better looking and easier to use than when the projects
were done exclusively in C. I think most students would prefer to do the client and server
side in Java rather than doing the server side in C. The first time I used the simple
message service project, most students wrote the client and the server in Java. In Spring
’04 I am teaching the course with Java again. This time I required the students to write
the client in Java and the server in C. I will not be able to judge the success of this
approach until the end of the semester.

I think it is valuable to teach the network programming features of C since so much of the
network software is written in C. For example I frequently refer to programs from [3] and
I want the students to be able to read the C code. Depending on the results of the project
in the current offering of the course, I may go back to allowing the projects to be done
exclusively in Java but I think I will continue to teach enough networking programming
in C so that students can read C network applications.

Conclusion

Using Java has been a good addition to CS 471/571. Students build on their Java experience
from previous courses and found it interesting and rewarding to implement, albeit simplified
versions, of applications they frequently use. In its simplest form network programming in
Java looks like access to external data similar to file or database access. An area for further
investigation is to determine if simple network programming could be done early in the
curriculum so all CS students get experience with developing applications with data
communications features.

References

1. Peterson, Larry and Davie, Bruce. (2003). Computer Networks A Systems Approach.
Morgan Kaufmann.



2. Calvert, Kenneth and Donahoo, Michael (2002), TCP/IP Sockets in Java. Morgan
Kaufmann..

3. Stevens, W. Richard (1998).Unix Network Programming. Prentice Hall.



