
An Analysis of Object Orientated Methodologies in a
Parallel Computing Environment

Travis Frisinger
Computer Science Department

University of Wisconsin-Eau Claire
Eau Claire, WI 54702
frisintm@uwec.edu

Abstract

By examining several of the different methods for Object Oriented (OO)
programming in a parallel environment, we are able to make a recommendation as
to which is the most efficient method. We are also able to recommend whether
procedural programming is more efficient than OO programming in a parallel
environment. There are three object methodologies that will be explored, which
are: MPICH, OOMPI and CHARM++. These three methodologies will be
compared based on how much memory, CPU time and bandwidth each uses.
These factors are also used to compare procedural programming to OO
programming in a parallel environment.

mailto:frisintm@uwec.edu

Introduction

The choice of methodology for parallel program design and implementation can
have a profound impact on the application. There are many factors that contribute
to a parallel application’s performance. The use of Message Passing Interface
(MPI) is perhaps one of the most important decisions that can be made. The
process does not stop there; one must chose which implementation of MPI to use
and whether or not to use a procedural or OO programming approach. By
examining three parallel methodologies, MPICH, OOMPI, and CHARM++ we
will make a determination as to which is the most efficient. We will also be able
to determine if an OO implementation or procedural implementation is better
suited to parallel application design. To solve the above issues the following
factors will be examined in relation to each methodology: CPU time, memory and
bandwidth used by each. To illustrate this difference a simple test application that
is fairly easy to port for each language and methodology was created. The effects
of scaling the processes beyond the number of nodes will also be examined to see
how each deals with this type of stress.

MPICH C

MPICH is one of the most popular implementations of the MPI standard in use
today. It currently supports bindings for FORTRAN, C and C++ [1]. This MPI
implementation was used for both the procedural and OO application.

Figure 1 illustrates th
finding application, a
of nodes in the cluste
processes to node rati

e

CPU Time

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

Se
co

nd
s

CPU Time
Figure 1 – MPICH C Average CPU Tim
1x 2x 4x 8x 16x 32x

Processes to Node Ratio
e average CPU time for the test application, a prime number
s we scale the number of processes well beyond the number
r. The CPU time for the C application up to about the eight
o is about two seconds. After that point the CPU time rises

sharply. This may be due to the fact that the network has become saturated with
packets; further investigation is needed to verify this fact. If this is the case it will
help explain how MPICH deals with network issues – by preventing the more
finite resource from becoming scarce and causing an even greater increase in the
CPU runtime.

Figure 2 illustrates the average system memory usage for each node of the cluster
while executing the test application. System memory usage remains fairly
constant around 250,000 Kbytes for all process to node ratios. One would believe
that as the processes to node ratio increases that the amount of memory would
increase.

Figure 3 illustrates t
result of this is the fa
of bandwidth decrea
that the bandwidth u
fact that MPICH ma
the currently execut
bandwidth usage an
resources to the syste

Memory Usage

0.00

50000.00

100000.00

150000.00

200000.00

250000.00

300000.00

350000.00

400000.00

1x 2x 4x 8x 16x 32x

K
bs

 U
se

d

Memory

20

40

60

80

100

120

140

160

B
an

dw
id

th
 In

 K
bp

s

Processes To Nodes
Figure 2 – MPICH C Average Memory Usage
he average bandwidth used by the cluster. A very interesting
ct that as the ratio of processes to nodes increases the amount
ses at an almost linear rate. One possible reason for the fact
sage drops as the ratio of processes to nodes increases is the
y deal with network saturation by decreasing the volume of
ing process. This causes a rise in runtime and a decrease in
d might be an attempt to balance the use of available
m.

Bandwidth

0.00

00.00

00.00

00.00

00.00

00.00

00.00

00.00

00.00

1x 2x 4x 8x 16x 32x

Processes to Nodes

Bandwidth

MPICH C++

MPICH also supports C++ bindings for its version of MPI. One of the questions
posed is whether or not procedural applications or OO applications function best
in a parallel environment. MIPCH was chosen to evaluate this question because of
its support for both types of bindings.

Figure 4 illustrates the average CPU time for the test application using MPICH.
This graph illustrates the same behavior that the MPICH C application illustrates.
A fairly constant runtime of about 2 seconds appears up until the ratio of
processes to nodes reaches an eight to one ratio. The runtime for the OO
application is slightly less then that of the procedural C application. This comes as
a something of a surprise, as one would believe that the OO application would
take a larger amount of time to run, due to the increase in overhead caused by
using objects. One possible reason for the slight decease in runtime may be due to
the use of reference passing instead of direct object passing. More exploration of
the MPICH C++ bindings would be needed to confirm this hypothesis.

Figure 5 illustrates
application. This gr
that memory usage
This is expected beh
expect the amount
increased, because
amount of memory
Kbytes or almost
application.

 Figure 3 – MPICH C Average Bandwidth Usage

CPU Time

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

1x 2x 4x 8x 16x 32x

Se
co

nd
s

CPU Time
Processes to Nodes
 the average amount of memory used by the MPICH C++
aph differs from the MPICH C application’s graph by the fact
 increases as the ratio between processes to nodes increases.
avior since objects are used instead of primitives. One would

 of memory used to increase as the amount of processes
objects consume more memory than primitives. The average
 used by the MPICH C++ application is around 400,000
double the amount used by the procedural MPICH C

Figure 4 – MPICH C++ Average CPU Time

Figure 6 illustrates th
application. The bandw
The point at which it
node ratio. This is also
increase in CPU time
conservation; an attem
This is at the cost of
efficient use of syste
network bandwidth w
application performan

Memory

0.00

50000.00

100000.00

150000.00

200000.00

250000.00

300000.00

350000.00

400000.00

1x 2x 4x 8x 16x 32x

Processes to Nodes

M
em

or
y

U
sa

ge
 in

 K
bs

Memory

20

40

60

80

100

120

140

B
an

dw
id

th
 In

 K
bp

s

Fig
Figure 5 – MPICH C++ Average Memory Usage
e average amount of bandwidth used by the MPICH C++
idth decreases as the ratio of processes to nodes increases.

 starts to take the sharpest dip is at the eight processes to
 where the CPU runtimes start to shoot up. Once again the
 and decrease in bandwidth might be a type of resource
pt to conserve the most finite resource, network bandwidth.
 a more bountiful resource CPU time allowing the most
m resources. If too many processes were executing then

ould become saturated causing a large hit on overall
ce.

Bandwidth

0.00

00.00

00.00

00.00

00.00

00.00

00.00

00.00

1x 2x 4x 8x 16x 32x

Processes To Nodes

Bandwidth

ure 6 – MPICH C++ Average Bandwidth Usage

OOMPI

OOMPI was formed when the MPI consortium was considering the creation of
C++ bindings for the MPI standard [2]. They wanted to test the feasibility of
creating native C++ bindings vs. the creation of C++ bindings on top of C
bindings. The current OOMPI implementation is a thin client on top of MPICH C
bindings [3]. Due to this fact one would expect the overhead, even though it is
small, to possibly affect the performance of OOMPI in comparison to the other
methodologies.
The fact that the current OOMPI implementation is a thin client over C bindings
appears to have no effect on the efficiency of the OOMPI C++ application. The
CPU runtimes are almost identical to that of MPICH, the MPI implementation
that OOMPI is running on top of. This graph like all of those preceding it shows a
sharp increase in runtime at the eight processes to a single node ratio. This is
expected behavior for OOMPI due to the fact that the C bindings for MPICH
cause the same effect and the overhead involved in using MPICH under OOMPI
does not seem to affect the performance of OOMPI.

The average amount of memory usage for OOMPI follows a distribution similar
to that of the MPICH C bindings. The average amount of memory used by
OOMPI is around 350,000Kbs or about 100,000Kbs more than the MPICH C
application. This increase is to be expected since we are using objects and not just
primitives. The interesting fact here is that the MPICH C++ application uses
almost twice the amount of memory than the MPICH C application. It can be
suggested that the creators of OOMPI have optimized the C++ bindings in
OOMPI to make the most efficient use of the MPI C bindings, which OMPI relies
on.

CPU Time

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

1x 2x 4x 8x 16x 32x

Processes To Nodes

Se
co

nd
s

CPU Time

Figure 7 – OOMPI Average CPU Runtime

The bandwidth usage
methodologies have
nodes, only in this c
ratio of 32 processes
OOMPI attempting
CPU time. OOMPI a
This is the first grap
processes per node. I
bandwidth and CPU
processes to nodes r
performance increas
bandwidth causing a

.

Memory

0.00

50000.00

100000.00

150000.00

200000.00

250000.00

300000.00

350000.00

400000.00

1x 2x 4x 8x 16x 32x
Processes To Nodes

M
em

or
y

U
se

d
in

 K
bs

Memory

20

40

60

80

100

120

140

Ba
nd

w
id

th
 In

 K
bs
Figure 8 – OOMPI Average Memory Usage
 for OOMPI follows the same pattern that all the other OO
exhibited. A decline around at the ratio of eight processes to
ase the amount of bandwidth used increases sharply at the
to nodes. The behavior shown in Figure 9 may be a result of
to balance the difference between network bandwidth and
ppears to have a more developed algorithm for this behavior.
h that does not continually fall off after the ratio of eight
nstead OOMPI attempts to find a middle ground for network
runtime usage. OOMPI finishes about 10% quicker at the 32
atio then the MPICH C application did implying a slight
e. This might be due to the increased use of network
more efficient use of the available resources in the system

Bandwidth

0.00

00.00

00.00

00.00

00.00

00.00

00.00

00.00

1x 2x 4x 8x 16x 32x
Processes To Nodes

Bandwidth

Figure 9 – OOMPI Average Bandwidth Usage

CHARM++

Charm++ is a hybrid of C++ and the MPI standard. CHARM++ was created at the
University of Illinois – Urbana-Champaign in an attempt to increase programmer
efficiency [4]. One would believe that this marriage of the two would yield a very
well rounded product. Unfortunately this does not appear to be the case.

Figure 10 illustrates the average amount of time the test application took to
execute using the CHARM++ methodology. One of the largest surprises here is
the fact that the quickest run time was around 20 seconds at the one to one ratio of
processes to nodes. This is slower then the 32 process to one node ratio of all
other methodologies.

One reason for t
on top of an im
creating the com
underpinnings o
way to test the e
where CHARM
standard if the re

The memory us
other two OO tr
top of the MPI
methodology; th
modified to mer

CPU Time

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1800.00

1x 2x 4x 8x 16x 32x
Processes To Nodes

S
ec

on
ds

CPU Time
Figure 10 – CHARM++ Average CPU Runtime
he poor performance maybe due to the fact that CHARM++ is run
plementation of MPI causing a large amount of overhead in
munication between the layers. Further investigation into the

f CHARM++ is needed to determine a more accurate reason. One
xistence of overhead would be to compile and test the application
++ was configured to use pure TCP/IP rather then the MPI
sults improved greatly this would imply that MPI was to blame.

age for CHARM++ was slightly more than that of either of the
ials. This might be due to the fact that CHARM++ is a layer on
standard rather than a thin client. It appears to be more robust
is might be due to the fact that the C++ language has been

ge both C++ and MPI into one implementation.

One very in
continues to
the two to o
previous lev
bandwidth m
network ban
algorithm us

CHARM++ Memory Usage

0.00

50000.00

100000.00

150000.00

200000.00

250000.00

300000.00

350000.00

400000.00

1x 2x 4x 8x 16x 32x
Processes To Nodes

M
em

or
y

In
 K

bs
Memory
Figure 11 – CHARM++ Average Memory Usage
teresting observation about CHARM++’s bandwidth usage is that is
 trail off after the two process to one node ratio. One side note is that
ne level is also the location of the largest increase of runtime from the
el. One possible reason for this apparent inefficient use of network
ight be due to a poor balancing strategy in regard to CPU time and
dwidth. CHARM++ may not have the ability to fully optimize the
ed to do balancing of system resources.

Bandwidth

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

30000.00

1x 2x 4x 8x 16x 32x
Processes To Nodes

B
an

dw
id

th
 in

 K
bp

s

Bandwidth

Figure 12 – CHARM++ Average Bandwidth Usage

Summary

With the exception of CHARM++, the OO methodologies appear to outperform
the MPICH C bindings. The CPU runtimes of the OO application are as good if
not better then those of a procedural application. They do degrade in memory and
bandwidth usage. However, the added cost of memory and network bandwidth
does not affect the scaling of performance.

Based on the research data it would appear that OO is a better choice for parallel
application design. However, CHARM++’s data shows signs of being a very poor
choice for developing parallel applications. More research is needed to determine
if this is really the case or just an accident due to a small data set. In the choice
between OO methodologies either MPICH C++ or OOMPI both appear to work
as efficiently as the other. There is very little difference between them, with the
exception that OOMPI appears to handle network bandwidth allocation better.
Given the lack of object overhead in a procedural language it would seem that a
procedural language would run more efficiently. As far as allocation of system
resources is concerned procedural C wins out requiring far less memory
(anywhere from about thirty percent to half as much then the OO methodologies.)

The surprising fact about this research is that the OO methodologies are more
efficient with respect to CPU time, showing solid performance results as the
process to node ratio increases.

References

[1] MPICH - A Portable MPI Implementation, http://www-
unix.mcs.anl.gov/mpi/mpich/
[2] Peter S. Pacheco, Parallel Programming with MPI, Morgan Kaufmann (1997)
[3] Indiana University, OOMPI, http://www.osl.iu.edu/research/oompi/
[4] University of Illinois at Urbana-Champaign, Parallel Programming
Laboratory, http://charm.cs.uiuc.edu

http://www.osl.iu.edu/research/oompi/
http://charm.cs.uiuc.edu/

	Travis Frisinger
	University of Wisconsin-Eau Claire
	Eau Claire, WI 54702
	frisintm@uwec.edu
	Abstract
	Introduction
	MPICH C
	MPICH C++
	OOMPI
	CHARM++
	Summary

