
What’s the Score?
Building Text Processing Agents in the Domain of Movies

Nick Frederick
Department of Computer Science

University of Northern Iowa
nickfre@uni.edu

Kevin O’Kane
Department of Computer Science

University of Northern Iowa
okane@cs.uni.edu

Ben Schafer
Department of Computer Science

University of Northern Iowa
schafer@cs.uni.edu

Abstract

This paper will present the development of intelligent agents built to test the hypothesis
that agents can be built which convert textual reviews of movies into a numerical rating,
based solely on the text within the review. To test this hypothesis, we began with a base
set of reviews from a single critic. These reviews consisted of both the textual review
and a known numerical rating. Using this, each agent built a knowledge base for the
specific writing style of the critic. This knowledge is then applied to the text of
additional reviews in an effort to generate proper and accurate numerical predictions.
This paper will compare three different agents which convert text to a numerical score
using single term, double term and triple term matrices respectively. Discussed results
include agent accuracy, under what situations the agent is incorrect, and possible
modifications for future generations of agents.

Introduction

In a world where the number of choices can be overwhelming, recommender systems
help users find and evaluate items of interest. They do so by connecting users with
information regarding the content of recommended items or the opinions of other
individuals. The more personalized forms of recommender systems often use a
technology known as collaborative filtering (CF) [, ,]. CF systems generate a
personalized “neighborhood” of like-minded individuals for each user of the system.
For example, MovieLens [], a CF system in the domain of movies, might find the N
people who most often agree with each of the members of the site. By using the
opinions of these N people, MovieLens can make predictions about movies that a user
has not yet viewed.

Unfortunately, CF systems suffer from several problems [,]. One of these is the first-
rater problem. In order to be effective, CF systems have to have ratings for items in the
system. If everyone waits until someone else has offered an opinion, the system
stagnates and becomes unusable. Thus, CF systems need users who are willing to try
the items being recommended even if they turn out to be lousy items. In a domain such
as movies, these people readily exist. They are called critics. Since the dawn of the
video age there have been critics writing reviews of movies. Unfortunately, they have
not always used a numerical rating system as would be needed for a CF system. Even
among the critics that do include numerical scores, they vary greatly in the scale that
they choose to use (thumbs up/thumbs down, the 5-stars rating, the letter grade rating,
etc).

In order to improve CF based recommender systems, our goal was to create one or more
intelligent systems that would be able to read a written review of a critic, and determine
what rating that the author of the review would have given the review. This is
accomplished by creating a tree-like structure of the critic’s reviews and the words that
they contain.

The Data Set

The data set for this project was obtained from the Rotten Tomatoes movie review site
[]. Although all the reviews did not contain textual reviews of the movies and some of
the textual reviews were not long enough to establish a 'good base'; we determined that
there was enough complete data within the data set to give reliable results for this
project.

Then the problem of how to use the data set came up. Since the language we were
going to use to write the intelligent agents had an 80 character limit for the line length
that could be read, we needed to devise a way to change that data set so that Mumps [],

the programming language we would be using, could parse through the data. So we
wrote a C program that parsed through the entire dataset and separated all of the lines
accordingly.

Organizing the Data

Once we determined that we had a few authors in the data set with more than 150 full
reviews each we decided the data set would be usable. We chose to use 100 reviews to
train the intelligent agent and then use the remaining reviews to test how smart that the
agents had become. To train the agent, we put the training data set in to a B-Tree using
Mumps separating each review by author and then further separating by each movie
each author had reviewed. A B-Tree is similar to a binary tree in that they both have
some of the same rules. You can traverse a B-Tree just like a binary tree but the main
difference is the number of nodes you can have at each level. In a B-Tree you can have
as many nodes as you want at each level. The top level of a B-Tree may have 100 or
more nodes as a binary tree can only have one. Then from this tree we picked one
author who had around 150 full reviews to use as a test subject. This author was then
separated in to their own B-Tree where all of the review ratings were normalized to an
n-of-10 score to make the creation of the intelligent agent easier and to have more
concise results. Also any word that was less than three characters was eliminated from
the dataset as the words usually have little meaning.

The Agents
The agents that we created for this project used a single term matrix, a double term
matrix, and a triple term matrix. A single term matrix is basically an one by n array of
all the words that appear in the reviews. And each of these words has a value assigned
to it that is its 'worth'. A double term matrix is a matrix that is a n by n matrix
containing all the possible pairs of words that appear next to each other in the reviews.
Also each pair of words has a value assigned to it that is its 'worth'. A triple term matrix
is a matrix that is n by n by n matrix of all possible triplets of words that appear next to
each other. Also each triplet has a value assigned to it that is its 'worth'. The initial
'worth' of a word, pair of words, or triplet of words is referring to the number of times
that the agent counted them as being in the document. This initial 'worth' is edited later
in the process to come up with a more meaningful value and is explained later in this
paper.

Single Term Matrix

The top level of the single term matrix for the intelligent agent consisted of ten nodes
one for each possible value of that a review can have on a one through ten scale. Then
the level of the B-Tree below each node is a list of all possible words that appear for

each review score leaving out words less than three characters. Each word node has a
count assigned to it representing how many times that word appeared in all the reviews
of that specific rating. While creating this B-Tree of words for each review we also
created a B-Tree of all of the words and kept a count of how many times each word
appears in the test set over all. Then after both trees were created we went back through
the B-Tree that was separated by each review score and then went through each possible
word in each of those nodes and divided the word count that was held there by the total
word count for that word overall in all of the documents (Term Frequency Inverse
Document Frequency). By doing this we had now established how much each word
was 'worth' to each review score.

The next step was to test the intelligent agent that we had created. We did this by going
through the remaining reviews that that author had left one at a time. For each review
we created a B-Tree of all the words in the review and for each word kept a count of
how many times each word had occurred in that specific review. Then we went had the
intelligent agent go through the B-Tree we had created of rated reviews and establish a
score for the new review by adding up the product of the word count times the 'worth' of
that word for a specific score. The agent did this for all ten possible score levels. Then
the score with the highest number at the end was declared the winner and the new was
assigned that score. We then had the agent compare the score it gave the review with
the actual score that the author had given it and then kept track of an average amount off
(Mean Absolute Error) and the largest off that the agent had been (Maximum Error).

Double Term Matrix

The top layer for the double term matrix is the same as it was for the single term, one
node for each possible review value. The next layer of this B-Tree is slightly different;
each node is now represented by two words not one. So when parsing though each
individual review to create the test tree, the agent captured two words at a time and then
shifted one word to the right and then captured those two words, while skipping over
words that are less than three characters. A word pair count was kept this time keeping
track of how many times each pair of words appeared next to each other for each
possible review. Also there was a word pair count kept for all possible reviews kept for
making the same kind of calculations that were made for the single term matrix. After
creation of both B-Trees the Intelligent then made the calculations for each word pair to
give their 'worth'.

The next part was to test the double term matrix that we had created. This was done
much the same way as we did with the single term matrix except we doubled up the
words in each node. Then we had the intelligent agent go through and compare each of
the ten possible scores looking for the highest total score for each specific review. We
then had the agent compare the actual score with the score it had assigned it and keep

track of the average amount off and the largest amount off.

Triple Term Matrix

The top layer of the triple term matrix is the same as the double and single term, one
node for each possible review value. The next layer of this B-Tree is slightly different
from the two-term matrix by instead of having two words in a node now there are three
words per node. This agent also skips over words that are shorter than three characters.
So now when the intelligent agent is parsing though all the base reviews it absorbs three
words then shifts to the left one word and then absorbs three more words at a time (two
of these words are the same as the previous time just in different positions). Also there
is a 'triple word' count kept for each group of words and for each group of words for all
the documents as a whole. These two counts are then divided just like they were in the
single and double term matrices to give each set of terms their 'worth'.

The triple term matrix was then tested just like the single and double term ones were.
The test reviews were now put in to triple term nodes and matched up and scored just
like before. Then the agent took the highest score out of all of the possible ten scores
and compared it to the actual score. The average amount off and the most ever wrong
on all of the agent's predicted scores was recorded just like with the other two tests.

Results

The single term matrix had a maximum error of six points on a ten-point scale. This
means that the most the intelligent agent was ever off on one of the guesses for what the
reviewer would have given the review was six. But the average amount that the agent
was off demonstrates that this was not a common occurrence. The average amount that
the agent for the single term matrix was off was 0.545454 in either direction. This
means that on average the agent was either half a point high or low on the prediction.

Agent MAE MAX
Single 0.55 6
Double 0.0 0
Triple 0.55 5

The double term matrix turned out to yield out best results. The maximum error for the
triple term matrix was zero. This means that the agent never guessed wrong. And as
one might guess the average amount wrong was also zero because of this.

The triple term matrix ended up having slightly better results than the single term matrix
but not as good of results as the double term matrix. The maximum wrong that the
agent for the triple term matrix ever had was five. Although the triple term matrix had a
lower maximum wrong, which was desirable, it had a slightly higher average amount
that the agent was wrong with a score of 0.5511363636. This means that it was wrong a
little more often than the single term matrix.

These results obviously point to the fact that the double term matrix is the superior way
to decide how to have the agent evaluate what score to give a movie review. Assuming
that the agent is working on a matrix that was created by using reviews written by the
same author as the review that the agent is making the prediction for.

Future Work

For the future we would like to try and evaluate all three methods on the full movie
review database and to see if we get similar results. Also it would be nice to see if these
methods are portable to other domains other than just movie reviews. The current belief
that we have would be that the triple term matrix would end up being the superior way
of evaluating reviews but more time and processing power is needed for a full
evaluation of the dataset.

References

1. Good, N., et al. (1999). Combining Collaborative Filtering with Personal Agents
for Better Recommendations. Proceedings of AAAI-99 pp.439-446.

2. Maes, P. (1994). Agents that Reduce Work and Information Overload. CACM
37(7) pp.31-40.

3. MovieLens website. http://movielens.umn.edu.

4. O'Kane, Kevin C. (1999), "An M Compiler for Internet server applications", M
Computing, 7(1):11-17.

5. Rotten Tomatoes website. http://www.rottentomatoes.com.

6. Schafer, J.B., Konstan, J.A., and Riedl, J. (2001). E-Commerce
Recommendation Applications. Data Mining and Knowledge Discovery 5(1/2)
pp.115-153.

7. Shardanand, U. and Maes, P. (1995). Social Information Filtering: Algorithms

for Automating Word of Mouth. Proceedings of CHI-95 pp.210-217.

