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ABSTRACT
In this paper we present the traffic circle problem which
involves evolution of traffic navigation among autonomous
robots. This problem can be broken down into smaller sub
problems which we call behavior layers: path planning, object
avoidance, and unidirectional navigation. For the purpose of
this paper we focused on object avoidance and unidirectional
navigation.

Because this problem is very complex and dynamic, it pre-
sented a large number of influential factors that needed to
be broken up and analyzed individually. To fulfill the first
behavior layer, we replicated the object avoidance and sim-
ple navigation experiments developed by Nolfi and Floreano
[4]. The results obtained from multiple trial runs were an-
alyzed in order to gain better understanding of the genetic
algorithm (GA) properties. The two main GA parameters
that we focused on were population size and degree of muta-
tion. This analysis helps determine the degrees of freedom
and effective sizes of the two variables.

In our experiments we introduced a concept called zones,
which are used to promote unidirectional navigation through
evaluation criteria, the fitness function. The first experi-
ment, called directional zones, demonstrated that the robots
learned how to minimize the risk of going the wrong direc-
tion which maximized their fitness value, but did not achieve
the desired behavior of unidirectional navigation. Second
experiment, sequential zones exhibited an elementary level
of unidirectional flow, but the flow would break when faster
moving individuals ran into slower moving ones, thus caus-
ing congestion.

The results yielded from the the analysis and experiments
help to explain and eliminate a number of complex elements
introduced by the traffic circle problem, which in turn could
help improve future work on co-evolutionary strategies.
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1. INTRODUCTION
Evolutionary learning is a new revelation in the field of

autonomous robotics. Evolutionary robotics simulates Dar-
win’s natural selection to evolve behavior that closely fits the
evaluation criteria. This is done by selecting well-performing
individuals and replicating them with a certain level of mu-
tation to create the next generation where the process will
be repeated. This technique offers versatile and robust solu-
tions for unpredictable environments as well as bypasses the
difficulties that may have not been originally anticipated by
the designer. Artificial evolution can thrive on complexities
of dynamic environment and present rich solutions. Chal-
lenges arise when designing a control system for simultane-
ously co-evolving multiple robots that often tend to function
independently and to take actions in their own best interest,
thereby increasing the entropy of the system. However, the
main motive for research in co-evolutionary robotics is that
more complex tasks can be solved collectively then individ-
ually.

Traffic navigation is an integral part of every day life.
Along with this arise complexities such as coordination of
traffic flow and safety. A common problem is when too many
cars do not work together traffic jam or gridlock can occur.
Traffic circles were developed to offer a solution for cars to
safely navigate intersections of major roads. It does this by
forcing cars to slow down, thus eliminating high speed acci-
dents, which are major causes of fatal crashes. However, this
does not solve the first problem of traffic congestion. This
is due to navigation rules that are applied in traffic circle
problem, which we explain in later sections of the paper.

The goal of our research presented here is to evolve neu-
ral network controllers for robots using genetic algorithms
(GA), to navigate a traffic circle. From this, we hope to
observe rules that emerge from the system that maintain
efficient flow of traffic while still maintaining road safety.
This navigation problem can be broken down into several
sub-problems which we call behavior layers: object avoid-
ance, unidirectional navigation, and path planning. In this
paper we focus on the first two layers.

Prior to explaining the problem more in depth, we cover
some related work that has been done in this field and back-
ground. Some of the major concepts covered are neural net-



works, their architecture, and previous experiments such as
object avoidance. We replicated some of the object avoid-
ance experiments and analyzed the graphical representations
the obtained results, to gain a better understanding of the
GA parameters that offer variability in results. The two
parameters we concentrated on were population size and
mutation rate.

The conclusions drawn from the analysis helped us to con-
duct our experiments more efficiently. The two conducted
experiments directional zones and sequential zones used a
new concept of zones to help navigate through the built
maps.

In our conclusion, we discuss our results and the future
outlook of collective evolution for designing robot control
systems, as well as the differences between central and de-
centralized embodied systems.

2. RELATED WORK
Artificial evolution can produce a robot control systems

that are competitive with hand design systems [4]. An ex-
ample of this can clearly be seen in object avoidance ex-
periments where evolved neural controller can successfully
navigate in any environment. Regardless of the dynamics of
the problem, navigation relies on the proper mapping of ex-
ternal sensors to motor actions. This creates a feedback loop
where the next motor actions depend on the current sensor
reading, and similarly the sensor readings depend on the pre-
vious motor actions. This feedback loop can be sliced into
steps, at which time the control system can be evaluated to
check if it meets the criteria of the desired behavior through
the use of a fitness function. At the end a single compound
fitness value can be derived from the multiple fitness evalua-
tions, to represent the score of each of the evaluated control
systems. This provides the framework for, most frequently
three dimensional, graphical structure called Fitness Land-
scape.

The concept of a fitness landscape is used to present a
graphical relationship between genotypes (genes that en-
code the desired qualities) and success in replication. A
substantial amount of research has been put into a search for
the highest landmarks that represent local and global max-
imums [5]. The search for maximums is done by changing
various system parameter values until optimal or accurate
approximations can be found, which yield the best possible
results in the given task space.

Swarm robotics is a co-evolutionary approach for emer-
gence of global behavior. It was inspired by the social insect
metaphor where there are elements of collective behavior in a
decentralized system. In a swarm system, each autonomous
robot is able to make its own decisions towards solving a
simple task, while the swarm as a whole can solve more
complex tasks that an individual can not [6]. This is much
like the behavior that is desired in the traffic circle problem,
where each robot or vehicle work together to optimize the
flow of traffic through a traffic circle.

3. BACKGROUND

3.1 Neural Networks
An artificial neural network (ANN) is a system that con-

sists of many nodes (neurons), which are connected together
by synapses. Every synapse has an assigned threshold or a

weight value that the input must overcome in order for that
neuron to fire. Each neuron is connected to one or more
other neurons that create a network. The main idea of neu-
ral networks is to simulate parallel distributed processing,
very similar to biological neurons in the human brain.

In this research ANNs were used for as robot control sys-
tems. The network contained six inputs neurons, which cor-
related with six infrared sensors located on the robot, and
two output neurons that controlled speed and direction of
two motors. The input values range between [0,+1], where
the higher values indicate a closing in obstacle within the
proximity. Motor values range between [-1,+1], where 0 in-
dicates that the motor is idle, 1 when the motor is running
full force forward, -1 when the motor is spinning full force
in reverse. By evolving the weights between these neurons,
one can achieve the desired behavior.

Neural networks are particularly useful for designing robot
control systems because they are flexible enough to allow
adaptability to different environments without the need to
further change the weights. There are several architectures
one can use when designing a neural network to obtain dif-
ferent results. In our research, we primarily focused on feed
forward neural networks.

3.2 Genetic Algorithm
A Genetic Algorithm is a computer simulated search pro-

cedure that behaves similarly to Darwin’s natural selection
– survival of the fittest. A certain number of individuals
is chosen to represent a population, where each one repre-
sents a potential problem solution. Every agent is placed
into an environment where evaluation of the agent’s behav-
ior generally takes place every time step, based on the fitness
function. At the end of the run, an average fitness value is
calculated that will represent the agent’s ability to perform
the given task. The highest ranking individuals are selected
to create a sequence of new populations by mutating and
recombining (mating) the gene pool. Variability in selected
parameter values such as population size and mutation rate,
can offer unique solutions.

3.3 Object Avoidance
Object avoidance is the ability to navigate around in an

environment without causing collisions with obstacles. This
technique is a foundation for many other experiments. Our
replicated and newly-developed experiments use the object
avoidance fitness function developed by Nolfi and Floreano,
which breaks down into three parts [4].

Φ = V (1 −
√

∆v)(1 − i)
0 ≤ V ≤ 1

0 ≤ ∆v ≤ 1
0 ≤ i ≤ 1

(1)

The first part V is a sum of the absolute values of both
motors. This encourages motor use, regardless of its direc-
tion. As long as the value is above zero, it contributes to
the overall fitness value. If motor readings are negative and
positive, this indicates that the robot is spinning around. To
prevent this, straight movement needs to be encouraged and
rewarded. The second part (

√
1 − ∆v) accomplishes this by

giving higher fitness values to robots with small differences
between motor speeds. This induces the wheels to spin in
the same direction. The third part, (1-i), is the actual ob-
ject avoidance. The variable i gets its value from the highest



Figure 1: Mutation rate at 1

Figure 2: Mutation rate at 3

sensor readings. By default the input values are 1; the closer
a robot comes to an object the closer sensor values approach
0. This encourages robots to stay in the middle of the road,
rather then scrape or ride along the side of a wall.

4. ANALYSIS OF GA PARAMETERS
The main objective of our analysis of GA parameters is

to obtain a qualitative and quantitative understanding the
genetic algorithm. The perpetuating parameters are popu-
lation size (δ) and mutation rate (β). There are other GA
parameters such as generation size, steps (frequency of eval-
uations), epochs (trial runs per individual), etc., analysis of
which is outside the scope of this paper. With a wide range
of variability in parameter values, it is essential to look at
most effective settings that approximate as close to an opti-
mal solution as possible.

The problem with the results derived from a statistical
analysis is that they differ depending on the complexity of a
given task. In this case we chose to analyze the fitness val-
ues obtained from obstacle avoidance experiments, results

Figure 3: Mutation rate at 6

Figure 4: Mutation rate at 9

of which will help us make a prediction about the effective
setting for more complex tasks such as the traffic circle prob-
lem.

In all of our trial runs we kept the following variables
constant based on Nolfi and Floreano’s experiments: epoch
was set to 3 trials per individual, number of steps set to 500,
and generation size was 100. With these fixed parameters we
varied population size at 50, 100, 500, and 1000. Similarly
the mutation rate was varied 1, 3, 6, and 9 percent. All
possible combinations of the two parameters were produced
and analyzed. Due to time constrain, we were able to run
each combination only once. In the future, more trial runs
will have to be conducted to ensure the results. At the
moment this provides us with a preliminary overview.

4.1 Effective population size
Population size, δ, is a fundamental parameter in genetic

algorithms and knowing the approximate optimal value set-
tings for δ will give us the most effective gene pool from
which selections can be made. We were able to draw an



analysis of the population factor by examining the predictor
variable - generations - that in this case is [0,100], versus
the response variable - fitness value. (Figures 1-4) show the
four mutation rates, β. Each of the β graphs contains data
plots of population 50, 100, 500, and 1000.

With β fixed at 1 percent (Figure 1), there does not ap-
pear to be any variation in result that can be made con-
clusive without further examination of additional trial runs.
However, β set to 3 percent gives us more clear insight (Fig-
ure 2). It is very noticeable that δ at 1000 is the first to
make a sudden genetic jump to a higher level in the fitness
value, Φ, between generations 12 and 18. Similar genetic
jumps can be found in all of the δ. δ at 500 makes a rapid
jump in the Φ at generations 39 through 43, δ at 100 makes a
jump at 42 to 48. Finally, δ at 50 trails significantly further
behind, making its jump from generation 58 to 62.

With β at 9% (Figure 4), we found very interesting oc-
currences of Φ reaching 5.4 when δ was 1000, the highest
value acquired among all the trial runs. It became apparent
to us that with a larger pool of selectees to choose from and
with β at a local extreme results the exploration of fitness
landscape to its maximum potential.

The effective setting for δ depends on the complexity of
the task. For the given task such as simple navigation with
obstacle avoidance, the most effective δ is 100. However, as
more dynamics are introduced this value would vary.

4.2 Degree of mutation
Small β would appear to be effective in small populations

with the GA gradually selecting the neural network con-
trollers with the desired behaviors that produce the best
fitness evaluations. If a large value for β is selected, the
results of which can be seen in (Figure 4), then the fitness
value becomes too unstable when δ is 50. This is due to
the fact that the desired behavior can be quickly achieved
and just as quickly lost because there is a small number of
individuals that are selected for recombination of the next
generation. Our hypothesis on this is that the higher evalu-
ated controllers are carried over more accurately to the next
generation in smaller population when mutation is very lit-
tle because it is easier to preserve desired qualities. Also the
benefit of this is that this approach requires less computa-
tion and resources.

With a large β, the results are outstanding with large δ.
With large mutation rate the local maximums are found a lot
faster and more accurately. This is illustrated in (Figure 4)
where δ at 1000 achieves and maintains the highest Φ value
of 5.4. In small population the Φ results become completely
unstable and unpredictable. For object avoidance, the most
effective β setting is 3%.

5. THE TRAFFIC CIRCLE PROBLEM
A traffic circle is a road junction at which traffic streams

circularly around a central island. It was originally designed
so cars could merge into gaps in rotary traffic and remain
circling until the opportunity for the desired exit would come
up. This system forces a constant motion in the same direc-
tion creating a smoother flow than a traffic light would. The
direction differs from country to country but for the purpose
of our research we chose counter clockwise. This eliminates
the need for left turns flowing in and out of the circle, there-
fore avoiding cross traffic turning which reduces a number
of accidents [1]. Even though the traffic circle may prove

Figure 5: Traffic Circle Map

to be safer than regular road intersections, during times of
heavy traffic a gridlock can occur.

Our goal is to design a system that will derive the behavior
of navigating a traffic circle among autonomous robots while
still maintaining safety. The traffic circle problem is the
base structure for many smaller problems. It can be broken
down into three major behavior layers such as path planning,
object avoidance, and unidirectional navigation. By solving
these smaller sub-problems, one should be able to arrive
with the solution for larger traffic circle problem. Object
avoidance, navigation in an environment with out colliding
into obstacles, has been solved by previous researchers. In
our following experiments we addressed the unidirectional
navigation, where the encouraged behavior was traffic flow
in the same direction.

6. STEP BEHAVIOR EXPERIMENT SETUP

6.1 Simulator
The experiments here were carried out using a freely dis-

tributed simulator, YAKS (Yet Another Khepera Simula-
tor), that evolves the weights of the neural networks for the
robot controller. YAKS supports the use of multiple neural
network configurations on different robots at a time. This
allows the evaluation of different types of network architec-
tures and the ability to compare the resulting behaviors.
This feature was used in the Directional Zones experiment
to compare feed forward and modular networks.

YAKS simulates Khepera robots, which are circular robots
weighing 70 g each, with a diameter of 55 mm, and a height
of 30 mm. Robots have two wheels controlled by indepen-
dent DC motors that can move in two directions, forward
and reverse. Kheperas have 6 proximity sensors on one side
and 2 on the other. Individual unit price of physical robots
ranges from $2000 to $1000 USD.
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Figure 6: Directional Zone in detail

In designing the YAKS simulator, sensor and motor mea-
surements were recorded from a real Khepera robot. The
simulator then cross references these values when it needs
to get the values of the sensors or motors. This minimizes
calculations the simulator must make which in turn speeds
up experimentation. YAKS allows the user to customize
and design worlds with walls, various obstacles, and spec-
ify start locations. In our experiments we introduced the
concept of zones (Figure 5), which are circular areas that
provide the ability to reference to that specific location on
the map. Zones incorporate features such as the number
of times a specific robot has visited it and current coordi-
nates of an individual within the zone. The simulator also
offers the ability to configure GA parameters used to evolve
the neural network controller such as number of generations,
population size, epochs, number of steps each robot is evalu-
ated, mutation percentage, number of parents and offspring,
and selection method. In the experiments we used a combi-
nation of elite and tournament selection methods.

6.2 Directional Zones
A directional zone experiment works on the principle that

the fitness function evaluates the angle under which the
robots enter a zone and predicts the degree under which
it will exit (Figure 6). All zones have an acceptable 180 de-
gree range specified. Robots that are entering and exiting
zones, as specified in the environment through the desig-
nated range of the zone, are rewarded with a higher fitness
value. Robots that enter from the opposite 180 to 360 de-
grees and robots that enter within the 180 range with exit
angle within the same range, are punished with a lower fit-
ness function value (Equation 2). By using many zones, one
can specify a desired traffic flow. The experiment was run
with δ set at 100 individuals for 500 generations with β at
3%, each robot was allowed to take 500 steps.

Φ′ = Φ + (κµ) − (τρ)
where
κ = .02

0 ≤ µ ≤ 108
τ = .02

0 ≤ ρ ≤ 108

(2)

The directional zone fitness function is implemented by
combining object avoidance with reward and punishment
factors from zone evaluation. κ is a reward constant for go-
ing through a zone correctly. µ is the number of zones the

robot correctly entered. τ is a punishment constant. ρ is
the number of zones incorrectly entered. This function is
evaluated at the end of the run. The difference of reward
and punishment is added to the average Φ to create a new
value Φ′.

6.3 Sequential Zones
The sequential zones experiment, much like the directional

zones, attempts to enforces directional control through the
use of zones. Each zone has a sequential id number, and
the zones are placed on the map in an incremental order,
forming the contour of the path that will exhibit the desired
direction. For the given experiment, a simple square map,
with a pentagon in the center, was constructed. The chosen
direction was counter clockwise. The experiment was run
with δ set at 100 individuals for 100 generations with β at
3%, each robot was allowed to take 500 steps.

Φ = V (1 −
√

∆v)(1 − i)(1 − ζ) (3)

The core of the formula remains the same as in object
avoidance, with an added component (1− ζ), which governs
the direction flow. After comparison of current zone to the
previous one, ζ is set in the following manner:

ζ = 0.5 : if previous zone has a higher value
ζ = 0.2 : if the robot is not in a zone
ζ = 0.0 : if previous zone has a smaller value

(4)

The combined effect of all the components of the fitness
function promotes straight moving robots to enter zones in
incrementing order at maximum speed. This formula is de-
signed to run every evaluation step.

7. EXPERIMENT RESULTS

7.1 Directional Zone
The directional zone experiments did not emerge unidi-

rectional navigation as expected. The exhibited behavior
was that robots moved in a straight line from their initial
position until a wall was encountered and then just stop.
This is due to the fact that they would score a higher fitness
value just from a short run that was done correctly and not
make any more movement in order to avoid punishment.

Another possible reason why the directional zones did not
evolve a unidirectional traffic flow is because there was no
direct feedback to the robots. They were placed on the map
and given a trial run without any indicators of their current
performance, so they had no means of knowing if they are
moving in the correct direction until the end of the run. This
is equivalent to trying to walk blind fold on a zigzagging
line, where even if the subject succeeds, replication of such
performance is virtually impossible. In this case the robots
were able to learn techniques that would cheat the fitness
function but still give them relatively high fitness values.

7.2 Sequential Zones
Due to the environment map being square and the pro-

moted direction being counter clockwise, the neural net con-
trollers learned to circle around the pentagon. They accom-
plished this by always turning left in order to achieve a high
fitness value. For the most part, this seemed to work, and



the robots demonstrated unidirectional navigation. How-
ever, problems occurred when faster moving robot ran into
a slower one, causing oneself to turn around and reverse
direction by turning left. The faster moving robot contin-
ued its path in the opposite direction until another obstacle
would be encountered thus once again causing it to turn left
and resume its original course. This approach would seem to
work, but only with a very small number of individuals in a
large environment where there are less chances for collisions.

8. CONCLUSION AND OUTLOOK
The main objective was to develop an environment that

would emerge with a set of rules that would govern traf-
fic flow. This task broke into three behavior layers - path
planning, object avoidance, and unidirectional navigation.
The emphasis of the paper fell on the last two components.
Through replication of object avoidance, we were able to ful-
fill the first behavior layer towards approaching the global
solution. Also by replicating these experiments it became
apparent that there is a large number of variables in the ge-
netic algorithm that can vary and if not properly set even
skew the results. The two factor that we looked at were
population size and mutation rate. Knowing the optimal
setting for the two GA parameters, one can efficiently find
local maximums. None of the combinations of settings dis-
cussed here work best in all circumstances. However, there
are effective values for these parameters that work best in
certain situations and tasks. For example in very dynamic
environment, it would be useful to have a large population
size with combination of large percent of mutation. This
yields maximum exploration of fitness landscape, resulting
unique and more accurate solutions. For obtaining object
avoidance the most optimal settings are a combination of δ

set at 100 with β at 3%.
Unidirectional navigation, another step behavior, was ad-

dressed by two different experiments: directional and se-
quential zones. The one that demonstrated partial unidirec-
tional traffic flow was the sequential zones experiment. This
technique works well in very simple environments with a low
number of interacting individuals. In our case, the neural
controllers learned to always circle left by only making left
turns, a behavior that matched a traffic circle system. How-
ever, the rules began to break when faster moving robots
ran into slower moving ones.

By performing the above experiments, it became clear to
us that all robots were acting in their own self interest, max-
imizing their fitness values while the ignoring the ultimate
goal of the collective. Our setup used a decentralized con-
trol system where decisions are made on an individual level.
Results suggest future work to move to the alternative of a
centralized approach. A central control system governs and
evaluates a group’s performance rather than individuals. It
is possible for a decentralized approach to work in the future,
given that all of the step behavior components of traffic circle
problem are fulfilled. Path planning definitely will play an
important role in evolving traffic rules. Up to this point the
robots have been demonstrating reactive behavior, but with
path planning, this might prove otherwise. Implementation
of this technique may eliminate the case where a robot runs
into a neighbor causing the faster robot to change direction.
Robots also need to learn how to know where they currently
are in relation with others. Communication between robots
may be necessary. The results in this paper can be used

as framework for future experimentation and help improve
future work on co-evolutionary techniques.
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