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Abstract 
 
Verilog is a hardware description language that allows hardware designers to use a 
software style approach, via a high level programming language, to construct realizable 
hardware implementations reflected in a blueprint called a “netlist.” This paper presents a 
study of the various software coding styles and constructs available in Verilog and the 
effect of those design style choices on the resulting hardware implementations. Using a 
Verilog compiler and a netlist viewer, we show that different software design constructs 
often result in radically different implementations. In particular, we show that when using 
the data flow and behavioral Verilog coding styles, it is not uncommon for significant 
cost increases to occur as a result of some common software design approaches. A 
collection of such inefficient software design techniques will be described, and improved 
approaches will be demonstrated. 
 
 



Introduction 
 
Verilog [1,2] is a hardware description language that allows hardware designers to use a 
software approach (using high level programming constructs) to build realizable 
hardware implementations, typically on a field programmable gate array (FPGA). Since 
many different coding styles and constructs are available in Verilog, there are many 
differing hardware implementations that might result from these styles and constructs. 
This paper describes the results of our study on the effect of these various Verilog 
constructs on the corresponding hardware implementations. We found these results to be 
quite significant, and in some cases even surprising. 
 
Verilog supports three main coding styles: structural, data flow, and behavioral. 
Structural style uses gate-level constructs (e.g. AND, OR, NOT) to directly represent 
logic gates in a manner that is both simple and straight-forward, but convenient only if 
the hardware designer already knows the desired implementation details beforehand. In 
contrast, data flow style uses a more “programming-like” approach to represent logic 
gates, thereby eliminating the need for gate level primitives and, more importantly, a 
priori knowledge of the target implementation that will result. But the data-flow style has 
its disadvantages as well; sequential circuits cannot be modeled, and designs based on 
conditional logic are cumbersome and tedious to implement. Finally, the behavioral style 
closely mimics high level software design by using procedural constructs (loops, 
conditional statements, etc.) to determine the actions to be performed as a result of 
changes in input signals, thereby permitting sequential circuit design while also 
eliminating the need to know beforehand how the design will be implemented. Of these 
three styles, the structural style most closely represents the actual hardware 
implementation that will result, while the behavioral style most closely represents the 
intended behavior, or high level design, of the circuit. 
 
Our study evaluates various Verilog software design constructs using each of the three 
coding styles, and classifies these constructs according to the quality of the resulting 
hardware implementation. We found that structural style did indeed directly map to the 
hardware implementation, without any surprising or unexpected results. However, as 
we’ve noted above, the structural style forces the hardware designer to manually design 
“pre-build” all of the implementation detail, rather than permit the Verilog compiler to 
perform that task. For this reason, the structural style is not often preferred for even 
moderately complex designs. In contrast to the structural style, the results of both the data 
flow and behavioral styles surprised us at times. Among the most interesting findings are 
the alternative implementations that result from a variety of conditional statements 
including nested if/else and case statements. Common software design solutions that use 
if/else statements often result in inefficient multi-level, or cascaded, combinational logic 
including multiple two-input multiplexors, whereas case statements usually result in a 
single large multiplexer implementation without any cascading of combinational logic. 
 
Because there are a variety of ways that software designers can use the Verilog HDL to 
implement combinational and sequential logic structures, each of these possible 
approaches may result in a different hardware realization, and in a corresponding cost for 



that realization. In light of these styles, we wish to consider a variety of software design 
approaches and to select those that lead to the most cost efficient implementations. For 
that purpose we use two separate cost measures. The first measure is the sum of the total 
gate count and the total fan-in to those gates, excluding any contributions from inverters 
applied to input values (since most input signals are available within a logic design in 
both inverted and un-inverted forms already). This is an important and quite common 
metric because it measures the total amount of small scale integration (SSI) logic 
required to implement a design; smaller gate count / fan-in is better than larger. The 
second measure is the total delay through the circuit (again, discounting any delays from 
inverters applied to input values). Of course, shorter delay is better than longer delay. 
 
In the remainder of this paper, we will illustrate the various coding styles and constructs, 
and demonstrate their effects on the resulting hardware implementation.  
 
 
2x1 MUX 
 
To illustrate these two cost metrics with an example, we show in Figure 1 an 
implementation of a 2x1 multiplexor (MUX) designed in Verilog using the structural 
coding style. In this style, the hardware designer must have a priori knowledge of the gate 
level implementation desired, and the result is always a direct mapping of software 
constructs to hardware gates. While this approach is simple and direct, it is not often used 
by hardware designers on larger and more complex designs because it replaces high level 
behavioral or functional design concepts with structure specific ones. In short, it requires 
design at a much lower level than is either necessary or desired. However, in simple 
examples such as this, it does permit us to compare various designs directly to known 
optimal ones. 
 
The 2x1 MUX uses a 1 bit selector signal S to “select for output” exactly one of two 
possible inputs lines denoted D[1:0]. While the 2x1 MUX is particularly simple, it 
happens to be a fundamental building block for many designs to be discussed shortly. 
 

Figure 1: Structural Style 2x1 MUX 
module mux2x1(Q,D,S); 
   input [1:0] D; 
   input S; 
   output Q; 
 
   wire Sn; 
   wire R0, R1; 
 
   not(Sn,S); 
 
   and(R1,S,D[1]); 
   and(R0,Sn,D[0]); 
 
   or(Q,R0,R1); 
endmodule 

 
 

Cost = 9:2T 

 
The gate count for the optimally implemented 2x1 MUX shown above is 3 + 6 = 9 gates 
with a total delay of 2T, which we will denote as 9:2T. We now compare three competing 



software design styles, all in Verilog, for implementing this same 2x1 MUX. We do this 
as a means for illustrating some basic Verilog software design styles, even though the 
results in this simple case are indistinguishable. Figure 2 provides the most common data 
flow style solution to the 2x1 MUX design, while Figure 3 and Figure 4 are typical 
behavioral style approaches. We’ve also included Figure 5 and Figure 6 to round out the 
most likely approaches to 2x1 MUX design, even though we doubt these styles would be 
common for software developers. 
 

Figure 2: Data Flow Style 2x1 MUX (Conditional Operator) 
module mux2x1(Q,D,S); 
   input [1:0] D; 
   input S; 
   output Q; 
 
   assign Q = S ? D[1] : D[0]; 
endmodule 

 
 

Cost = 9:2T 
 

Figure 3: Behavioral Style 2x1 MUX (If/Else Statement) 
module mux2x1(Q,D,S); 
   input [1:0] D; 
   input S; 
   output Q; 
   reg Q; 
 
   always @(S or D) 
   begin 
      if (S)  
         Q = D[1]; 
      else  
         Q = D[0]; 
   end 
endmodule 

 
 

Cost = 9:2T 

 

Figure 4: Behavioral Style 2x1 MUX (Case Statement) 
module mux2x1(Q,D,S); 
   input [1:0] D; 
   input S; 
   output Q; 
   reg Q; 
 
   always @(S or D) 
   begin 
      case (S) 
      1’b0 : Q = D[0];  
      1’b1 : Q = D[1]; 
      endcase 
   end 
endmodule 

 
 

Cost = 9:2T 

 



Figure 5: Behavioral Style 2x1 MUX (If Statement) 
module mux2x1(Q,D,S); 
   input [1:0] D; 
   input S; 
   output Q; 
   reg Q; 
 
   always @(S or D) 
   begin 
      Q = D[0]; 
      if (S)  
         Q = D[1]; 
   end 
endmodule 

 
 

Cost = 9:2T 

 

Figure 6: Behavioral Style 2x1 MUX (Defaulted Case Statement) 
module mux2x1b3(Q,D,S); 
   input [1:0] D; 
   input S; 
   output Q; 
   reg Q; 
 
   always @(S or D) 
   begin 
      case (S) 
      1’b0 : Q = D[0];  
      default : Q = D[1]; 
      endcase 
   end 
endmodule 

 
 

Cost = 9:2T 

 
Note that regardless of the software design style selected above, the resulting 
implementation for the 2x1 MUX is precisely the same. This is typically true only for the 
most simple of designs. While other possible data flow and behavioral approaches are 
possible here as well, the results are typically no different. 
 
 
4x1 MUX 
 
We now examine a more interesting case, the 4x1 multiplexor. In the 4x1 MUX, we wish 
to use a pair of input bits S[1:0] to select one of four possible outputs D[3:0]. Here is the 
simple pseudocode representing the basic idea (note that this example is not intended to 
represent a good software approach to implementing this structure): 
 

if (S[1:0] == 00) { 
 Q = D[0]; 
} else if (S[1:0] == 01) { 
 Q = D[1]; 
} else if (S[1:0] == 10) { 
 Q = D[2]; 
} else { 
 Q = D[3]; 
} 

 



In general, a 2Nx1 MUX uses an N bit selector input S[N-1:0] to select one of 2N inputs 
for output on a 1 bit line. Of course multiplexors of various sizes exist, and this example 
can be easily generalized to any of those other sizes. 
 
As we demonstrated for the 2x1 MUX case, there are a number of ways that a software 
designer can potentially implement this logic structure. Figure 7 shows a cost optimal 
implementation of the 4x1 MUX done in Verilog using the structural coding style. 
 

Figure 7: Structural Style 4x1 MUX 
module mux4x1(Q,D,S); 
   input [3:0] D; 
   input [1:0] S; 
   output Q; 
 
   wire [1:0] Sn; 
   wire [3:0] R; 
 
   not(Sn[0],S[0]); 
   not(Sn[1],S[1]); 
 
   and(R[3],S[1],S[0],D[3]); 
   and(R[2],S[1],Sn[0],D[2]); 
   and(R[1],Sn[1],S[0],D[1]); 
   and(R[0],Sn[1],Sn[0],D[0]); 
 
   or(Q,R[0],R[1],R[2],R[3]); 
endmodule 

 
Cost = 21:2T 

 
The cost of this implementation is clearly 21:2T. 
 
We continue now by comparing two very similar behavioral approaches for designing the 
4x1 MUX. While both use a nested if/else structure, one uses Boolean logic while the 
other uses bitwise operators in the conditional tests. We claim that both of these 
approaches are reasonably likely choices for classically trained software developers. We 
also note that they both result in the same implementation with cost of 30:7T, among the 
highest cost hardware implementations of the 4x1 MUX designs we will discuss! 
 

Figure 8: Behavioral Style 4x1 MUX (Boolean Logic Nested If/Else) 
module mux4x1(Q,D,S); 
   input [3:0] D; 
   input [1:0] S; 
   output Q; 
   reg Q; 
 
   always @(S or D) 
   begin 
      if (S[1] && S[0]) 
         Q = D[3]; 
      else if (S[1] && !S[0]) 
         Q = D[2]; 
      else if (!S[1] && S[0]) 
         Q = D[1]; 
      else 
         Q = D[0]; 
   end 
endmodule 

 
 

Cost = 30:7T 

 



It is clear from both Figure 8 and Figure 9 that, regardless of whether the conditions are 
determined by Boolean algebra or by bitwise operations, the resulting design involves 
primitive gates that dictate the select functions of each 2x1 MUX, where one MUX is 
associated with each conditional test. 
 

Figure 9: Behavioral Style 4x1 MUX (Bitwise Logic Nested If/Else) 
module mux4x1(Q,D,S); 
   input [3:0] D; 
   input [1:0] S; 
   output Q; 
   reg Q; 
 
   always @(S or D) 
   begin 
      if (S[1] & S[0]) 
         Q = D[3]; 
      else if (S[1] & ~S[0]) 
         Q = D[2]; 
      else if (~S[1] & S[0]) 
         Q = D[1]; 
      else 
         Q = D[0]; 
   end 
endmodule 

 
 

Cost = 30:7T 

 
Figure 10 shows the same approach one last time, but now directly using a binary 
encoding of the selectors. This simple change results in the optimal 21:2T cost 
implementation, the same as the structural style approach. 
 

Figure 10: Behavioral Style 4x1 MUX (Binary Encoded Nested If/Else) 
module mux4x1(Q,D,S); 
   input [3:0] D; 
   input [1:0] S; 
   output Q; 
   reg Q; 
 
   always @(S or D) 
   begin 
      if (S == 2'b11) 
         Q = D[3]; 
      else if (S == 2'b10) 
         Q = D[2]; 
      else if (S == 2'b01) 
         Q = D[1]; 
      else 
         Q = D[0]; 
   end 
endmodule 

 
 

Cost = 21:2T 

 
The key property of this software design style (the property that makes it the most cost 
efficient) is that the conditions tested use constant values that, when taken as a whole, 
cover the range of all possible 2 bit inputs of S. Of course, this approach should motivate 
the use of a case statement, and Figure 11 below indeed shows that the case statement is 
equivalent to this. 
 



Figure 11: Behavioral Style 4x1 MUX (Case Statement) 
module mux4x1(Q,D,S); 
   input [3:0] D; 
   input [1:0] S; 
   output Q; 
   reg Q; 
 
   always @(S or D) 
   begin 
      case(S) 
      2'b11 :   Q = D[3]; 
      2'b10 :   Q = D[2]; 
      2'b01 :   Q = D[1]; 
      default : Q = D[0]; 
      endcase 
   end 
endmodule 

 
 

Cost = 21:2T 

 
The use of the default label really has no effect here so long as all of the possible 2 bit 
select values are explicitly listed; that is, the default case label could have been 
replaced by the constant 2’b11 with the same result. 
 
There are a number of more complex alternative approaches that, while unlikely choices 
for software design styles, are enlightening when compared with the resulting 
implementations. The first such approach, shown in Figure 12, is to treat the 2 bit selector 
as two separate 1 bit selectors using structured and nested conditional statements. While 
we doubt any software developers would follow this cryptic approach, we do note that it 
is more cost efficient (at 27:4T) than the cascaded MUX designs since it involves the use 
of only three 2x1 MUXs (in a tree like structure), as opposed to the four cascaded MUXs 
shown in Figure 8 and Figure 9 above. 
 

Figure 12: Behavioral Style 4x1 MUX (Nested Structured Conditionals) 
module mux4x1(Q,D,S); 
   input [3:0] D; 
   input [1:0] S; 
   output Q; 
   reg Q; 
 
   always @(S or D) 
   begin 
      if (S[1] == 0)  
         if (S[0] == 0)  
            Q = D[0]; 
         else  
            Q = D[1]; 
      else 
         if (S[0] == 0) 
            Q = D[2]; 
         else 
            Q = D[3]; 
   end 
endmodule 

 
 

Cost = 27:4T 

 
Logically, this same idea can also be implemented using a nested conditional operator, an 
approach which is not at all likely to be used by software engineers (even though it is 
fairly common among hardware engineers). Nevertheless, the results of this style are 
shown in Figure 13 and are exactly the same as in Figure 12 above. While software 



designers are often loath to use the conditional operator, hardware designers know that it 
always results in a 2x1 MUX in the implementation, as can be seen from Figure 13. 
Hence, it is a fairly common HDL coding construct. 
 

Figure 13: Behavioral Style 4x1 MUX (Nested Conditional Operators) 
module mux4x1(Q,D,S); 
   input [3:0] D; 
   input [1:0] S; 
   output Q; 
   reg Q; 
 
   always @(S or D) 
   begin 
      Q = S[1] ? (S[0] ? D[3] : D[2])  
               : (S[0] ? D[1] : D[0]); 
   end 
endmodule  

Cost = 27:4T 
 
It is important to remember that the cost efficiency of these approaches is not simply a 
matter of the choice of a case statement versus nested conditional statements or 
conditional operators. As we stated earlier, the optimal implementation is produced when 
the conditions to be tested can be clearly mapped to constants that can be used in case 
labels, and when the conditions tested cover the range of constant values that could occur. 
 
As a final remark, we note by way of Figure 14 below that it also is possible to generate 
the optimal 21:2T cost approach using the data flow style. While we don’t recommend 
this approach due its lack of readability, it does provide proof that the three distinct 
Verilog coding styles are each capable of producing the identical results, even if it 
requires some clever and cryptic coding. 
 

Figure 14: Data Flow Style 
module mux4x1(Q,D,S); 
   input [3:0] D; 
   input [1:0] S; 
   output Q; 
 
   assign Q = (S[0] & S[1] & D[3]) |  
              (S[0] & ~S[1] & D[2]) | 
              (~S[0] & S[1] & D[1]) | 
              (~S[0] & ~S[1] & D[0]); 
endmodule 

 
Cost = 21:2T 

 
 
Traditional Software Techniques 
 
Logic design in an HDL like Verilog is not like traditional software design. As one 
simple example of this, the attempt to represent a MUX (of any size) by the data flow 
style logic 
 
 assign Q = D[S]; 



 
or by the behavioral style logic 
 

always @(S or D) 
begin 
   Q = D[S]; 
end 

 
is not permitted. While this is a perfectly reasonable software design representation of a 
MUX, the non-constant index into D, represented by S in this case, is not permitted. For 
vectored signals such as D, the index is called a bit select (for a single bit of D) or part 
select (for multiple bits of D), and this index must be constant. In short, D is not an array 
but rather a multi-bit signal (bus) that requires a constant selector in order for the logic 
connections to be determined at compile time. 
 
Similarly, consider the example in Figure 15 of a 4x1 MUX in which two of the select 
cases are identical (S = 2’b00 and S = 2’b01 both select D[1]). Software developers 
are likely to handle the two identical cases by combining the logical conditions into a 
single Boolean expression as shown. 
 

Figure 15: 4x1 MUX with Combined Conditional Cases 
module mux4x1(Q,D,S); 
   input [3:0] D; 
   input [1:0] S; 
   output Q; 
   reg Q; 
 
   always @(S or D) 
   begin 
      if (S == 2'b00 ||  
          S == 2'b01) 
         Q = D[1]; 
      else if (S == 2'b10) 
         Q = D[2]; 
      else 
         Q = D[3]; 
   end 
endmodule 

 
 

Cost = 46:7T 
 
Unfortunately, the resulting implementation is very inefficient with a cost of 46:7T, 
assuming that the 2 bit “equals” comparators can be efficiently implemented in 9:2T 
using primitive gates including xor. On the other hand, by avoiding compound Boolean 
conditions and either testing each case separately or by permitting the final fall through 
else clause to handle the combined cases, the result is a 4x1 MUX with cost 21:2T and 
two ports wired together (ports D1 and D0 in Figure 16). The lesson to be learned here is 
that one pays for compact Boolean logic in software with additional hardware logic as 
well as delays in the implementation. That is, in most instances the extra software effort 
required to itemize the cases will often result in more efficient hardware. 
 



Figure 16: Duplicated Conditional Cases 
module mux4x1(Q,D,S); 
   input [3:0] D; 
   input [1:0] S; 
   output Q; 
   reg Q; 
 
   always @(S or D) 
   begin 
      if (S == 2'b11) 
         Q = D[3]; 
      else if (S == 2'b10) 
         Q = D[2]; 
      else // fall thru cases 
         Q = D[1]; 
   end 
endmodule 

 
 

Cost = 21:2T 
 
 
Applications to Finite State Machine Design 
 
The importance of the results is easily demonstrated by a practical example involving 
finite state machine design, a very common technique for designing the control of 
sequential circuits. Most sequential circuits are designed and implemented using finite 
state machines, employing either the Moore or the Mealy model [3]. In Moore machines, 
the output is governed solely by the current state of the machine, whereas Mealy machine 
output is a combination of both the current state and the current input, thus producing a 
level-sensitive output. As a simple example, Figure 17 presents a finite state diagram 
representing a Moore style model that outputs z=1 only when two or more consecutive 
inputs w are 1. 
 

Figure 17: Moore FSM for Detecting Two Consecutive 1’s 

C z 1 = ⁄ 

B z 0 = ⁄ A z 0 = ⁄ w 0 = 

w 1 = 

w 1 = 

w 0 = 

w 0 = w 1 = 

ResetN=0 

 

 
The Verilog for a Moore machine is remarkably simple, and uses many of the design 
principles we have investigated above. In general, a Moore machine can be structured in 
Verilog to have three sections: one for defining the state transitions (based on both the 
current state and the current input value), one for defining the outputs (associated with 
each state, but independent of the inputs), and one for the actual transition that occurs 
only on a clock edge. The first two sections are entirely combinational is nature, and 
often use only the design principles we have discussed previously. The third section 



involves sequential logic since the transitions must occur on clock edges, but the logic 
involved is very simple. Figure 18 illustrates this in Verilog for the Moore machine “two 
1’s” problem: 
 

Figure 18: Two 1’s Moore Style Finite State Machine 
module MooreFSM(z,w,ResetN,Clock); 
   input w, ResetN, Clock; 
   output z; 
   reg [1:0] y, Y; 
 
   // the state assignment 
   parameter A = 2'b00, B = 2'b01, C = 2'b10; 
 
   // define the FSM combinational logic 
   // y represents the current state 
   // Y represents the next state 
   // w is the input that controls the next state selection 
   always @(w or y) 
      case (y) 
      A: Y <= (w ? B: A); 
      B: Y <= (w ? C: A); 
      C: Y <= (w ? C: A); 
      default: Y <= 2'bxx; 
      endcase 
 
   // define the combinational output logic 
   assign z = (y == C); 
 
   // define the sequential state change logic 
   always @(negedge ResetN or posedge Clock) 
      if(!ResetN) 
         y <= A; 
      else 
         y <= Y; 
endmodule 

 
The input values to this module are w, ResetN, and Clock; the output value is z. It is 
customary to use lowercase y to define the current state and uppercase Y as a wire to 
define the next state to enter on a clock edge. 
 
By applying our best results from the earlier analysis of various software design styles for 
implementing multiplexers, we can easily estimate the cost of this machine. In the first 
behavioral style block involving the state transitions, the four value case statement will 
infer a 4x2 MUX (cost = 21:2T per bit), since all cases are enumerated by two bit 
constants. The three conditional statements that are inputs to that 4x2 MUX will result in 
three (possibly even two since two cases are identical) 2x2 MUXs (cost for each = 9:2T 
per bit). Hence, we can infer the hardware implementation shown in Figure 19. In our 
solution, we have assumed that the two identical MUXs will be duplicated simply to 
make the point that, in general, a four state Moore machine design would have the format 
exactly as shown. 



 

Figure 19: FSM Combinational Logic for the State Transition Behavioral Block 

 
 

Similar to the behavioral style combinational logic for computing the next state, the 
sequential logic for actually making that transition on the next clock edge also involves a 
MUX. In this case, the result is always a 2x2 MUX (dependent only on the number of 
states in the FSM, not on the problem itself) with cost 9:2T per bit. The output of that 
MUX sets a D flip-flop of the appropriate size, where the clock signal of the flip-flop is 
driven by both the Clock and ResetN signals.  
Figure 20 illustrates this. 
 

Figure 20: Sequential Logic for State Transitions 

 
 

Finally, adding in the equals comparator logic (cost = 9:2T) for the combinational output 
logic results in a final design shown in Figure 21. 



 

Figure 21: Final Moore Style Two 1’s Design 

 
 
The final gate/fan-in cost (discounting delay since this is a sequential circuit) of this 
design is therefore 125. Design of finite state machines using the Mealy style model is 
not substantially different. 
 
In conclusion, as a result of our analysis of simpler designs, we are able to accurately 
estimate and optimize the cost of hardware implementations that result from carefully 
chosen software design constructs. An understanding of the effects of software style can 
therefore make a significant difference in the final cost of a digital system 
implementation. 
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