
Comparison and Evaluation of Methodologies for
Transforming UML Models to Object-Relational Databases

Rajani Chennamaneni

Emanuel S. Grant, PhD.

Department of Computer Science
University of North Dakota

rajani@cs.und.edu

Abstract

Application and system modeling have become an important part of many software
development projects. The Unified Modeling Language (UML) has been accepted as the
general object-oriented modeling language for software systems. In relational database
development entity-relationship models have traditionally been used for modeling such
systems. It has been acknowledged that relational database management systems need a
better representation of the real world than that obtained with the current tabular
representation that are derived from the entity-relationship models. Object-oriented
modeling is an effective mechanism for representing real world structures. There are
many techniques for transforming UML models into object-oriented relational database
systems. In this work we will compare, and evaluate methodologies for transforming
UML class diagram (CD) models into object-oriented relational databases. This work will
focus on the transformations of CDs into a set of statements in SQL:1999. This work
will seek to identify the commonality and variability in the methodologies and
advantages of the approaches.

mailto:rajani@cs.und.edu

Introduction

Application modeling has become important to many software development projects such
as E-commerce and real-time systems. The Object Management Group [1] (OMG)’s
Unified Modeling Language [2] (UML) has been accepted as the general object-oriented
modeling language for software systems, and is supported by major corporations such as
IBM®, and Oracle®. In relational database development entity-relationship (E-R) models
have traditionally been used for modeling such systems. It has been acknowledged that
relational database management systems need a better representation of the real world
than that obtained with the current tabular representation that are derived from the E-R
models. E-R diagrams are used specifically for data modeling and do not specify how to
process the data. Object-oriented modeling is an effective mechanism for representing
real world structures as it provides diagrams for modeling different aspects of the system.
The UML supports object-oriented technologies and thus could be used for object-
relational database modeling. The UML models both data and process, which allows the
use of one notation for entire system modeling.

There are many proposals and techniques for extending and transforming UML models to
express object-oriented relational database systems [10]. In this work we will
demonstrate, compare, and evaluate two methodologies for transforming UML class
diagram (CD) models into object-oriented relational databases. This work will focus on
the transformations of UML CDs into a set of Data Definition Language statements in
SQL:1999 [8]. The comparative analysis and evaluation of two methodologies will be
accomplished by applying both methodologies to a common example CD.

One of the methodologies (Methodology 1) [3] being researched extends the UML in
terms of stereotypes, tagged values, and constraints to enable the modeling of
applications with object-relational database constructs.

The second methodology (Methodology 2) [4] uses standard UML CDs to model the
applications. These CDs are converted into semantically equivalent ones by transforming
all the roles into sub-classes and removing any cycles in the class diagram. The models
are then converted to Nested Normal Form [7] (NNF) tables. In object-relational
databases tables may not be in first normal form [9], because they contain nested
relations. Thus several NNF for nested relations have been defined to eliminate
redundant data.

Our work will seek to identify the commonality and variability in the two methodologies
and determine the advantages of the two approaches in using UML to model object-
relational databases.

This paper is organized as follows: The next section summarizes the background
concepts needed for the research. The next two sections summarize the two
methodologies using a common example class diagram. The final section gives the
expected results and conclusions.

Background

The Unified Modeling Language

The Unified Modeling Language (UML) is a graphical language for specifying,
visualizing, constructing, and documenting the artifacts of software systems, as well as
for business modeling and other non-software systems [1]. The UML’s architecture is
based on a four-layer meta-model structure, which consists of meta-meta-model, meta-
model, user-defined model, and objects. The functions of these layers are summarized in
Table 1 [1].

Table 1

Layer Description Example
meta-meta-model The infrastrure for a meta-modeling

architecture. Defines the language for
specifying meta-models.

MetaClass,
MetaAttribute,
MetaOperation

meta-model An instance of a meta-meta-model.
Defines the language for specifying a
model.

Class, Attribute,
Operation, Component

user-defined model An instance of a meta-model. Defines
a language to describe an information
domain.

Flight, Airline,
Customer, TicketPrice

user objects An instance of a model. Defines a
specific information domain.

Bowing 747, Delta,
John, $200

The UML is at the meta-model layer, which is an instance of the meta-meta-model layer.
The UML meta-model is described using Abstract Syntax, Well-formedness rules, and
Semantics. The abstract syntax is given as models described in UML class diagrams and
natural language. The well-formedness rules are given in a formal language and natural
language. The semantics are mainly given in natural language, but may include some
additional formal notation [1].

The UML provides extension mechanisms that enable new kinds of modeling elements to
be defined and also enable the attachment of information to new modeling elements. This
is accomplished by using stereotypes, constraints and tagged values. Stereotypes are used
to extend the vocabulary of the UML, allowing the creation of new kinds of modeling
elements that are derived from existing ones, which are specific to a particular class of
problem and has its own properties, semantics, and notation. A stereotype is represented
as a name enclosed by guillmets (<<stereotype>>). A tagged value is used to extend the
properties of a UML modeling element, allowing for the creation of new information in
the element’s specification. A constraint is used to restrict the semantics of a UML
modeling element allowing for new rules or modification of existing ones.

The UML defines several graphical diagrams in terms of the views of a system. These
diagrams are class diagram, use-case diagram, state-chart diagram, activity diagram,
sequence diagram, collaboration diagram, component diagram, and deployment diagram.

Details of the diagrams except class diagram are outside the scope of this paper. Class
diagrams are described in the next section.

Class Diagrams

A class diagram illustrates the graphical view of the static structure of a system. It is a
collection of classes, interfaces, and their relationships. A class is represented graphically
as in Figure 1:

Figure 1: Representation of a Class

Relationships are mainly classified into association, aggregation, composition, and
generalization. An association is a generic relationship between two classes and is shown
as a thin line connecting two classes. Association has cardinality and role (optional) on
the each end and a label (optional) for the relationship. Role is the named end of an
association to indicate its purpose. Cardinality indicates the number of objects from each
class that may participate in the relationship. Aggregation indicates whole-part
relationship between two classes, shown as a line with a hollow diamond on the whole
class end. Composition is a strong form of aggregation where the "whole" is completely
responsible for its parts and each "part" class is only member of one "whole" class,
shown as a line with a filled (black) diamond on the whole class end. Generalization is a
taxonomic relationship between a more generalized class and specialized classes. It
represents super-class (generalized) and subclass (specialized) relationship between the
classes, shown as a line with a hollow triangle on the generalized class end. The notation
to model these relationships is shown in the Figure 2. Table 2 shows the types of
cardinalities, which indicate the multiplicities.

Table 2: Types of Cardinalities

0..* Zero or more
0..1 Zero or one
1..* One or more
1 One only
n n only (n > 1)
0..n Zero to n (n > 1)
1..n One to n (n > 1)

Payment

(b) Design–level Details(a) Details suppressed

Payment

paymentType
amount
creditCardNumber
date

getAmount()
getDate()

Operations

Attributes

Class name

Figure 2: Notations of relationships

Figure 3: Class diagram of Airline Reservations

FlightReservation

fareCode

Flight

flightType

TripReservation

recordLocatior
dateReserved

TravelAgency

agencyId
agencyName

Agent

agentId
agentName

Airline

airlineCode
airlineName

Seat

seatNumber

TravelAgent AirlineAgent

Ticket

fare

Payment

paymentType
amount
creditCardNumber
date

0..1 0..*

Customer

customerId
customerName
address
phoneNumber

0..*

1

0..*

1

{ordered}

0..*

0..*

bookedFlight

substituteFlight

0..*

0..1
1

1 0..*

1

1

0..1

passenger

FrequentFlyerAccount
0..* 0..1

employer employer

0..* 0..*

1 1

0..*

1

role Brole A

cardinality Bcardinality A label

role Brole A

cardinality Bcardinality A label

role Brole A

cardinality Bcardinality A
Association Class A Class B

label

Aggregation Class A Class B

Composition Class A Class B

Generalization Class A Class B

Notation

label

Figure 3 is an analysis-level class diagram (methods suppressed) of the Airline
Reservation system obtained from [6] and adapted for UML, which will be used as the
sample for analyzing and evaluating the methodologies. This class diagram illustrates
classes, attributes, associations, multiplicities, generalization and specializations, and
roles. A trip reservation consists of a sequence of flight reservations and each flight
reservation refers to a specific flight, sometimes it may also have a substitute flight and
also may refer to a seat. Each trip reservation is reserved on particular date and is
distinguished by record locator for further tracking, as one may not purchase the ticket on
the same day of reservation. A customer makes a trip reservation and may use a frequent
flyer account. The customer will receive the ticket only after the purchase has been made.
Multiple payments can be made with one purchase. An agent, who works for a travel
agency or an airline, may reserve a trip.

Normal Forms

Normalization is the process of analyzing the relationships between various elements of
the relational database and arranging the data efficiently in order to increase the
consistency of the data. This is accomplished by applying various normal forms [9] to the
tables. First normal form states that each row-column combination in a table must
contain a single value rather than a set of values. Second normal form states that a table
should be in first normal form and all attributes of the table must depend on the entire
primary key. Third normal form states that a table should be in second normal form and
no attribute should transitively depend on the primary key. As tables satisfy higher
normal forms, they are more consistent and store less redundant data.

Tables of object-relational databases may not be in the first normal form as they contain
nested relations and abstract data types with set of values as opposed to single value for
the row-column combination. For object-relational database design several normal forms
for nested relations have been defined, which are called nested normal forms, which
helps reducing redundant data values in object-relational databases. In [7] nested normal
forms are discussed in detail.

Methodology 1 [3]

Methodology 1 implements the transformation by using the UML extension mechanism
(stereotypes, tagged values and constraints) to define a new set of UML model elements
that represent object-relational database concepts. These new model elements are then
used to design the object-relational databases. Table 3 illustrates some of the extensions
that are proposed for relational databases. Table 4 lists the extensions proposed for
object-relational databases which can support collection types, methods etc. in
methodology 1. This methodology proposes some rules as guidelines for object-relational
database design given in Table 5.

Application of the extension mechanisms on the object-relational database design model
for the section of the CD in Figure 3 that contains TripReservation, Agent, TravelAgent,
AirlineAgent, TravelAgency and Airline classes of the Airline Reservation system results
in the stereotyped equivalent CD of Figure 4, which will then be transformed into
SQL:99 statements.

Table 3: Stereotypes for database design
SQL:1999 UML element Stereotypes
Database Component <<Database>>
Schema Package <<Schema>>
Tablespace Component <<Tablespace>>
Table Class <<Table>>
View Class <<View>>
Index Class <<Index>>
Column Attributes <<Column>>
Primary Key Attributes <<PK>>
Foreign Key Attributes <<FK>>
Multivalued Attribute Attribute <<AM>>
Calculated Attribute Attribute <<AD>>
Composed Attribute Attribute <<AC>>
NOT NULL Restriction Attributes <<NOT NULL>>
Unique Restriction Attributes <<Unique>>
Trigger Restriction <<Trigger>>
Restriction Restriction <<Check>>
Stored Procedure Class <<Stored Procedure>>

Table 4: Stereotypes for object-relational databases

SQL:1999 UML element Stereotypes
Structured Type Class <<udt>>
Typed Table Class <<persistent>>
Composes Association <<composes>>
REF Type Attribute <<ref>>
Array Attribute <<array>>
Row Type Attribute <<row>>
Redefined Method Method <<redef>>
Deferred Method Method <<def>>

Table 5: Guidelines for object-relational databases

UML SQL:1999
Class
 Class Extension

Structured Table
 Typed Table

Attribute
 Multivalued
 Composed
 Calculated

Attribute
 Array
 ROW/Structured Type in column
 Trigger/Method

Association
 One-to-One
 One-to-Many
 Many-to-Many

REF/REF
REF/ARRAY
ARRAY/ARRAY

Aggregation Array
Generalization Types/Typed Tables

Figure 4: UML design for Airline Reservations using Methodology 1

Figure 4 presents the UML class diagram that uses the extensions proposed for object-
relational databases. The one-to-many association between TravelAgency and
TravelAgent classes is modeled using composes stereotype and REF/ARRAY. Table 6
illustrates the implementation of the model in SQL:1999 as types and tables.

Table 6: SQL:1999 statements
CREATE OR REPLACE TYPE TripReservation AS OBJECT
(recordLocator VARCHAR(20),
 dateReserved DATE,
 FlightReservation_T REF(FlightReservation) ARRAY[5],
 Ticket_T REF(Ticket),
 FrequentFlyerAccount_T REF(FrequentFlyerAccount),
 Customer_T REF(Customer),
 Agent_T REF(Agent));

TripReservation
<<persistent>>

<<PK>>recordLocatior
dateReserved
<<array>>FlightReservation_T:{5,<<ref>>:{FlightReservation}}
<<ref>>Ticket_T:{Ticket}
<<ref>>FrequentFlyerAccount_T:{FrequentFlyerAccount}
<<ref>>Customer_T:{Customer}
<<ref>>Agent_T:{Agent}

TravelAgency
<<persistent>>

<<PK>>agencyId
agencyName
<<array>>TravelAgent_T:{50,<<ref>>:{TravelAgent}}

Agent
<<persistent>>

<<PK>>agentId
agentName
<<array>>TripReservation_T:{1000, <<ref>>:{TripReservation}}

TravelAgent
<<persistent>>

<<ref>>employer:{TravelAgency}

<<composes>> <<composes>>

AirlineAgent
<<persistent>>

<<ref>>employer:{Airline}

<<PK>>airlineCode
airlineName
<<array>>AirlineAgent_T:{50,<<ref>>:{AirlineAgent}}

Airline
<<persistent>>

<<composes>> <<composes>><<composes>>

<<composes>>

<<specializes>>

<<specializes>>

CREATE OR REPLACE TYPE Agent AS OBJECT
(agentId VARCHAR(10),
 agentName VARCHAR(20),
 TripReservation_T REF(TripReservation) ARRAY[1000]);

CREATE OR REPLACE TYPE TravelAgency AS OBJECT
(agencyId VARCHAR(10),
 agencyName VARCHAR(20),
 TravelAgent_T REF(TravelAgent) ARRAY[50]);

CREATE OR REPLACE TYPE TravelAgent UNDER Agent AS
(employer REF(TravelAgency));
 ….

CREATE TABLE T_TripReservation OF TripReservation;

CREATE TABLE T_Agent OF Agent;

CREATE TABLE T_TravelAgency OF TravelAgency;

 ….

Methodology 2 [4]

Methodology 2 uses UML design to generate NNF nested tables from a class diagram by
applying algorithm 0 of [4]. Algorithm 0 converts the class diagrams to semantically
equivalent ones and then algorithm 1 of [7] is used get the NNF nested tables. These
nested relation schemes are used for the implementation of SQL:1999 statements for
object-relational databases.

Figure 5 presents the semantically equivalent class diagram of the section of the Airline
Reservation System containing TripReservation, Agent, TravelAgent, AirlineAgent,
TravelAgency and Airline classes. The nested tables for the model of Figure 5 are given
as follows:

TripReservation:[recordLocator, dateReserved] (FlightReservation:[fareCode] …)*
 Ticket (Payment)* FrequentFlyerAccount Customer(FrequentFlyerAccount)* Agent)
Agent (TripReservation)*
employer_TA (TravelAgent)*
employer_AL (AirlineAgent)*
…
stand alone classes:
TravelAgent Employer_TA
AirlineAgent Employer_AL
TravelAgency:[agencyId, agencyName]
Airline:[airlineCode, airlineName]
…

Table 7 presents the SQL:1999 implementation of the model in Figure 5.

Figure 5: UML design for Airline Reservations using Methodology 2

Table 7: SQL:1999 Statements
CREATE OR REPLACE TYPE TravelAgency AS
(agencyCode VARCHAR(10),
 agencyName VARCHAR(20))

CREATE OR REPLACE TYPE Employer_TA AS
(TravelAgent_T REF(TravelAgent) array[n])

CREATE OR REPLACE TYPE TravelAgent AS
(Employer_TA_T REF(Employer_TA))

CREATE OR REPLACE TYPE Agent AS
(agentId VARCHAR(10),
 agentName VARCHAR(20),
 TripReservation_T REF(TripReservation) array[n])

CREATE OR REPLACE TYPE TripReservation AS
(recordLocator VARCHAR(10),
 dateReserved Date,
 FlightReservation_T REF(FlightReservation) array[n],
 Ticket_T REF(Ticket),
 FrequentFlyerAccount_T REF(FrequentFlyerAccount) array[n],
Customer_T REF(Customer),
Agent_T REF(Agent))

TripReservation

recordLocatior
dateReserved

TravelAgency

agencyId
agencyName

Agent

agentId
agentName

Airline

airlineCode
airlineName

TravelAgent AirlineAgent

0..*

1

0..* 0..*

1 1

Employer_TA Employer_AL

Conclusion

This research work is at an early stage and presently we are reviewing a number of
published works on the two transformation methodologies being evaluated. Once the
review has been completed we will proceed with the application of the methodologies on
the example CD of Figure 3.

Not all aspects of each methodology will be applicable to the Figure 3 example CD. In
Methodology 1 there was no approach of normalization for the database, because UML
modeling takes care of most of the design issues. In [3] there is no stereotype defined for
the generalization association, which we think is necessary. Thus, we will introduce a
stereotype for generalization (<<specializes>>) in our application of Methodology 1 to
the Figure 4 CD.

In Methodology 2 the first activity is the elimination of cycles in the CD. A cycle occurs
when it is possible to navigate from one class (the source) to another (the destination)
along two or more association paths and select the same set of objects in the destination.
Such occurrences usually result from poor design of the model. In our example, by
design, there are no cycles.

As an additional output of our evaluation of the methodologies we hope to be able
develop a hybrid UML CD to SQL:1999 transformation that amalgamates the best of the
two methodologies, and thus define a more efficient transformation technique. The
ultimate goal of this work is to broaden the use of the UML in software development, by
making it more usable in domains outside of the more popular ones in which it is
currently being used.

References

1. http://www.omg.org, Object Management Group.
2. http://www.uml.org, Unified Modeling Language.
3. E. Marcos, B. Vela, and J.M. Cavero (2001). Extending UML for Object-Relational

Database Design.
4. W. Y. Mok, and David P. Paper (2001), On Transformations from UML Models to

Object-Relational Databases.
5. OMG Unified Modeling Language Specification, March 2003, version 1.5.
6. M. Blaha, and W. Premerlani (1998). Object-oriented Modeling and Design for

Database Applications. Prentice Hall.
7. W.Y. Mok (2002). A Comparative Study of Various Nested Normal Forms.
8. A. Eisenberg, and J. Melton (1999). SQL:1999, formerly known as SQL3.
9. D. Maier (1983).The Theory of Relational Databases. Computer Science Press.
10. M. Stonebraker, and P. Brown (1999). Object-Relational DBMSs: Tracking the Next

Great Wave. Morgan Kauffman.

