
MavBlue: A Bluetooth Development Kit for Undergraduate and 
Graduate Research and Education 

Steven V. Case 
Department of Computer and Information Sciences 

Minnesota State University Mankato 
steven.case@mnsu.edu 

 

Abstract 

The Bluetooth protocols have been developed to support wireless transmission within 
personal area networks; primarily serving as a cable replacement technology for mobile 
devices.  Minnesota State University, Mankato has taken significant steps to incorporate 
wireless networking into the educational experience.  The campus has initiatives in place 
to bring a complimentary range of wireless technologies to the campus. A primary 
motivation for the research identified in this paper is to develop tools and support that can 
address wireless networking from the PAN (personal area network) perspective.  In 
addition, expanding the wireless initiative to include personal area network allows for 
research into the “last meter” problem, which has been identified by the Defense 
Advanced Research Project Agency (DARPA) as one of the most compelling challenges 
of the next decade (Rabaey, et al., 2000). 

For the purpose of this research, Personal Area Networks (PANs) are networks focused 
on connectivity for the personal use of a single individual.  Consequently, PAN solutions 
are focused more on interconnection of personal devices than on sharing resources, which 
has been the traditional motivation for other network technologies.  Today, the most 
prominent standard in development that can address the unique requirements of Personal 
Area Networks is the Bluetooth standard. 

Incorporating Bluetooth technology, at its current stage of development, into course work 
and undergraduate research on wireless data communications imposes certain difficulties.  
To begin with, Bluetooth-compliant radios and protocol stacks are difficult to obtain and 
are rather expensive (present pricing for developer’s kits ranges as high as $3,000 per 
radio).  Rather than waiting for such equipment to become more readily available, a set of 
hardware and software tools are being developed that are intended for use within 
undergraduate research initiatives.  This paper details the current design and development 
of this Bluetooth development environment, which we call MavBlue. 

Introduction 

Minnesota State University Mankato has taken significant steps to incorporate wireless 
networking into the educational experience.  The campus has initiatives in place to bring 
a complimentary range of wireless technologies to the campus.  Current infrastructure in 
place at MSU includes WAP, SMS, IEEE 802.11b, and LMDS technology.  These 



technologies provide the campus community with complementary wireless networking 
solutions for the WAN (wide area), MAN (metropolitan area), and LAN (local area) 
domains. 

A primary motivation for the research identified in this paper is to develop tools and 
support that can address wireless networking from the PAN (personal area) perspective 
and, thus, complete the spectrum of wireless solutions available to the University.  As 
identified by Held, this collection of wireless protocols provides reasonably complete 
coverage for the leading wireless data communication standards emerging and evolving 
today [5].  In addition, expanding the wireless initiative to include personal area network 
allows for research into the “last meter” problem, which has been identified by the 
Defense Advanced Research Project Agency (DARPA) as one of the most compelling 
challenges of the next decade [8]. 

For the purpose of this research, Personal Area Networks (PANs) are networks focused 
on connectivity for the personal use of a single individual.  Consequently, PAN solutions 
are focused more on interconnection of personal devices than on sharing resources, which 
has been the traditional motivation for other network technologies.  Today, the most 
prominent standard in development that can address the unique requirements of Personal 
Area Networks is the Bluetooth standard. 

Bluetooth Protocol Stack Overview 

Volume 1 of the Specifications of the Bluetooth System specifies the protocol stack of 
Bluetooth, which is shown in Figure 1 [1]. The layers of this protocol stack can be 
summarized as follows: 

 The RF layer, specifying the radio parameters, most closely maps to the physical 
layers of the International Standards Organization (ISO) model and the IEEE 802 
standards. 

 The baseband layer, specifying the lower-level operations at the bit and packet 
levels, most closely maps to the medium access layer of the IEEE 802 standards 
or the lowest levels of the data link layer of the ISO model.  The baseband layer is 
responsible for forward error correction operations, encryption, circular 
redundancy check (CRC) calculations, and the automatic-repeat-request (ARQ) 
protocol. 

 The link manager layer most closely maps to the middle levels of the data link 
layer of the ISO model.  The link manager also maps to the upper levels of the 
medium access layer and the lower levels of the logic link layer when compared 
to the IEEE 802 standards.  The link manager is responsible for specifying 
connection establishment and release, authentication, connection and release of 
synchronous connection-oriented (SCO) and asynchronous connectionless (ACL) 
channels, traffic scheduling, link supervision, and power management tasks. 



 The logical link control and adaptation protocol (L2CAP) layer maps to the 
logical link layer of the IEEE 802 standards.  Similarly, the L2CAP corresponds 
to the service access points of the ISO model.  This layer forms an interface 
between standard data transport protocols and the Bluetooth protocol. 

Above the L2CAP layer are a variety of protocols that most closely map to presentation 
and application layer protocols in the ISO model.  For example, the RFCOMM protocol 
is intended to provide emulation for standard RS-232 cabling whereas the service 
discovery protocol (SDP) enables one Bluetooth unit to identify the capabilities of other 
Bluetooth devices within its transmission range. 

 

RF

Baseband

Link Manager

L2CAP

RFCOMMTCSSDPOthers

Applications

Data
Audio

Con
tro

l

 

Figure 1.  The Bluetooth Protocol Stack 
 

The RF Layer 

The RF layer of the Bluetooth protocol specification provides for the physical 
transmission of bits.  This is the lowest layer of the protocol stack and, consequently, 
provides the least interest to the research detailed in this paper.  Nevertheless, some 
details of the RF layer are worthy of discussion; particularly since the design of the RF 
layer imposes certain data rate limitations on the use of Bluetooth technology. 

The goal of Bluetooth is to devise a ubiquitous, ad hoc radio system.  Therefore the 
choice of RF spectrum to use is constrained by government regulations on the use of the 
RF spectrum.  In order for Bluetooth to become ubiquitous, it must incorporate a radio 
solution that does not require any special licensing.  Therefore, the radio must operate in 
an unlicensed spectrum, typically referred to as the Industrial, Scientific, Medical (ISM) 
band.  The Bluetooth RF layer operates in the ISM band located at 2.5 GHz. 

The selection of the 2.4 GHz ISM band provides approximately 80 MHz of bandwidth 
for the RF layer.  As with any data network, it is necessary to provide multiple, 
concurrent access to this physical media.  The Bluetooth solution is to divide the 
spectrum into separate RF channels, each with a 1-MHz allocation, and to use frequency 
hopping within the available channels. 



The Baseband Layer 

The baseband protocol is responsible for establishing the physical link between two 
Bluetooth radios.  The Bluetooth standard partitions radios as masters and slaves.  As 
such, the baseband layer provides a variety of services, including connection and 
connectionless services, error detection and correction, flow control, hop management, 
address management, encryption, and authentication.  Clearly, the baseband layer 
provides many of the same capabilities as the data link layer in the ISO protocol stack 
and the same services as the media access control (MAC) layer in the IEEE 802 
standards. 

The Bluetooth protocol at the baseband layer uses a combination of frequency 
modulation and time division modulation.  To begin with, the radio spectrum is 
partitioned into 79 or 23 RF channels, depending on the national licensing issues.  The 
system then uses a pseudo-random frequency hopping sequence to transmit data using the 
available physical channels.  The hopping sequence allows logical channels to be 
constructed from the physical channels, with each logical channel using a unique hopping 
sequence.  Each logical channel has one master radio and one or more slave radios.  The 
master radio’s clock and address are used to uniquely select a hopping sequence.  Each 
logical channel is called a piconet.  Multiple piconets with overlapping coverage areas 
form a scatternet.  Figure 2 provides an illustration of possible example configurations of 
master and slave radios into a piconet and a scatternet.  In the figure, the three notebook 
computers have master radios and the phone and printers have slave radios.  Three 
piconets exist.  However, two of the piconets have overlapping coverage areas.  The 
printer that exists within the overlapping coverage enables two of the piconets to combine 
and form a scatternet. 

It is important to realize that a radio cannot serve as the master in more than one piconet 
as there would be no way to create a unique hopping sequence for each of the piconets.   

 

 

Figure 2.  Bluetooth Piconet (left) and 
Scatternet (right) Configurations 

 

 

 

Figure 3.  Bluetooth’s use of Time 
Division Duplex and Its Timing 



Within each logical channel, time division multiplexing is used as each channel is divided 
into time slots of 625-µs duration.  Time slots are numbered using a 27-bit sequence 
number, thus providing a cycle length of 227.  Finally, alternating transmission direction 
supports duplex operation.  The master transmits to one (or more) slave radios on the 
even-numbered slots and then the slave addressed during that slot can transmit to the 
master on the next slot.  Finally, transmission is packet-based with packet lengths of up to 
five time slots. 

The concept of time division duplex and its timing is illustrated in Figure 3.  In the 
illustration, a master radio (the notebook computer) communicates to two slave radios 
within its piconet.  Four time slots are illustrated.  The first two slots allow the master 
radio to communicate to the slave radio in the printer.  In the third and fourth time slots, 
the master radio communicates with the slave radio in the wireless phone. 

The Link Manager Layer 

The link manager layer implements the Bluetooth link manager protocol (LMP), the next 
level up from the baseband protocol.  The link manager layer is used for link set-up, 
security and control.  Thus, the link manager creates connections between the master and 
slave.  In addition, the link manager is responsible for negotiating parameters for data 
encryption.  The Bluetooth protocols allow negotiation of encryption keys, key size, and 
the dynamic enabling and disabling of data encryption, polling intervals, and power 
management parameters. 

Other than handling link set-up, perhaps the most critical responsibility of the link 
manager layer is to manage the various states in which each radio can operate.  Many of 
the operational states are intended to provide extremely low-power modes of operation in 
order to maximize battery life for mobile devices. 

The initial (or default) state of a Bluetooth radio on power-up is standby.  This state 
operates the radio in low-power mode with only the native clock running.  In the 
connected state, a connection has been established and packets may be exchanged 
between the master and the slave radios.  To transition to a connected state from a 
standby state, the radio must follow certain procedures as defined in the substates page, 
page scan, inquiry, and inquiry scan [12][13]. 

The Logical Link Control and Adaptation (L2CAP) Layer 

The L2CAP layer most closely resembles the data link layer of the OSI seven layer 
model.  The L2CAP layer is responsible for protocol multiplexing, segmentation and 
reassembly of application level packets, and provides additional QoS capabilities. 

The baseband protocol allows for the reliable delivery of up to 2,745 bits of user data; 
just 383 bytes of data.  The L2CAP layer provides for reliable delivery of application 
packets up to 64KB in size.  Clearly, in order to do so, the L2CAP layer must manage the 
segmentation and reassembly of these large packets into 383 byte packets. 



In addition to segmentation and reassembly of application level packets, L2CAP provides 
support for another layer of logical channels within the piconet’s logical channel.  The 
L2CAP logical channels are analogous to sockets within the Internet’s transport layer.   

Finally, the L2CAP layer provides additional QoS support such as negotiation of flow 
specification (similar to that specified in RFC 1363), which is exchanged with the remote 
device during channel configuration. 

Java and JSR-82 

Our implementation of the MavBlue software have been developed in Java.  The decision 
to use Java was based on two primary considerations, portability and ease of learning.  
The introductory programming courses at Minnesota State University Mankato are Java 
based.  Therefore, by implementing th MavBlue environment in Java, undergraduate 
majors are able to become involved in the research once they have completed their CS1 
and CS2 courses.  In addition, this approach allows networking of a collection of 
heterogeneous nodes without undue effort to port the software to those heterogeneous 
environments.   

The implementation requires host platforms to support either J2ME or J2SE with 
javax.com.  The primary development is done using J2SE on Windows-based 
workstations.  However, to the extent possible, the software is also ported to the Imsys 
platform, which is based on J2ME.  Details on J2ME are available in [11] and [9]. 

When the development of the MavBlue project was initiated, no standard Bluetooth APIs 
existed.  The MavBlue project proceeded to create a project-unique API for each of the 
Bluetooth protocols.  Each protocol was implemented as a package, all contained within 
the edu.mnsu.bluetooth domain.  For example, the Bluetooth L2CAP protocol was 
implemented as the edu.mnsu.bluetooth.l2cap package.   

Since the start of the MavBlue project, a standard Java API for Bluetooth has been 
developed.  The standard was developed by the Java Community Process (JCP) and is 
available as JSR-82.  The MavBlue project is now in the process of revising the project’s 
implementations in order to be consistent with JSR-82.  However, it is significant to note 
that JSR-82 was developed for J2ME, not for J2SE.  As such, JSR-82 is heavily based on 
the generic communication framework (GCF) used by J2ME to perform input and output.  
Unfortunately, the J2SE environment does not support GCF.  As a result, Bluetooth 
channels within the MavBlue environment are encapsulated as a MavBlue specific class 
rather than using the JSR-82 model.  Details on JSR-82 are available in [6] and [5] 

MavBlue Development Kit Components 

The MavBlue development kit consists of an integrated set of hardware and software that 
provides students and faculty with the ability to perform research into the application of 
Bluetooth technology.  The development kit consists of three distinct components: 



1. The MavBlue Bluetooth Protocol Stack.  This is a Java implementation of the 
Bluetooth protocols.  At present, the HCI, L2CAP, and SDP protocols are 
supported. 

2. The MavBlue Bluetooth Module.  This is a Blueooth adapter designed to interact 
with a host computer via the HCI UART interface.  The current MavBlue module 
is available in two configurations: a RS-232 module that uses a standard DB-9 
connector and a SIMM module for embedded environments. 

3. The MavBlue Bluetooth User Interface.  This is a graphical user interface to 
configure the protocol stack and to configure a Bluetooth piconet.  The MavBlue 
Bluetooth user interface serves as the JSR-82 Bluetooth Control Center (BCC). 

The remaining subsections provide additional details on these three components of the 
MavBlue development kit. 

MavBlue Bluetooth Protocol Stack 

Allowing undergraduate and graduate students to perform research into wireless 
communication requires the students to have access to the underlying network protocols.  
In the case of Bluetooth, as a minimum, source code to the implementation of the HCI 
and L2CAP layers is required.  In our specific environment, the implementation needed 
to be portable to the Windows, TINI, and SNAP environments. 

No publicly available implementation was located and licenses for commercially 
developed stacks were prohibitively expensive.  Consequently, a Java-based 
implementation of the HCI and L2CAP layers was developed as part of a related research 
project at MSU.  The source code for the implementation is available from the author in 
order to encourage further research into Bluetooth and personal area networking. 

The implementation of the Bluetooth protocol stack was developed with the objective of 
supporting real-time, embedded systems.  As such, the development followed the 
methodology and techniques established by Bruce Douglass for using UML to develop 
efficient objects for real-time, embedded systems [2].  Each protocol layer was 
encapsulated into its own package following the Microkernel Architecture Pattern 
identified by Douglass as a common layered architecture for communication protocols.  
Figure 4 uses UML notation to provide a static structure diagram of the architecture used 
to implement the HCI layer.  Similarly, Figure 5 provides the static structure diagram for 
the L2CAP layer. 



 
 

Figure 4.  UML Structure of the HCI Package 
 

The implementation of the protocol layers was performed using the iterative prototyping 
methodology identified by Douglass.  Iterative prototyping is an implementation strategy 
that relies on implementing vertical slices through the layered architecture.  This strategy 
is proven to be less risky and less expensive than the traditional approach of simply 
translating the layered architecture into a layered implementation [2].  This approach is 
also proving effective for student research as it allows students and faculty to focus on 
the functionality required to support their research. 

A significant portion of the design and implementation of the HCI and L2CAP layers 
addresses the functionality required to discover and connect Bluetooth devices into a 
piconet (i.e. the inquiry and paging processes) as well as the functionality required to 
establish ACL connections between Bluetooth devices. 

Once the piconet has been established, the system is assumed to be in a state that requires 
real-time performance.  Within this state, the protocol stack must provide real-time 
services for sending and receiving data between Bluetooth devices.  The MavBlue 
implementation uses the Channel class to provide the abstraction of an ACL connection.  
As such, the Channel class provides the application-level interface to the L2CAP layer 
for sending and receiving application-level data.  The Channel object provides a write() 
method for sending data and a read() method for receiving data.  The design and 



implementation of the write() and read() methods used the guidelines established by 
Douglass to design a solution suitable for real-time systems. 

 
 

Figure 5.  UML Structure of the L2CAP Package 
 

MavBlue Bluetooth Module 

Although commercial Bluetooth adapters are now available at reasonably affordable 
prices, such adapters are limited in usefulness for research.  The problem with these 
adapters is that the end-user is not provided with low-level access to the adapter and the 
Bluetooth protocols.  Instead, it is assumed that the user will access the Bluetooth device 
in a manner consistent with one of the Bluetooth SIG’s profiles.  This almost always 



implies that the user sees the Bluetooth device as either a virtual serial port or as a virtual 
Ethernet port. 

Bluetooth development kits provide developers and researchers with full access to the 
Bluetooth hardware and Bluetooth protocols.  Unfortunately, the commercially available 
development kits are too expensive for most undergraduate and graduate research 
projects.  Typical pricing for commercial development kits range from approximately 
$1500 (for hardware and software, but no source code) to $12000 (for embedded 
development kits with hardware and software). 

The MavBlue development environment includes Bluetooth adapters developed at 
Minnesota State University.  The Bluetooth adapters are based on a common schematic 
that relies on the HCI UART interface.  This interface was selected as it is easily adapted 
to RS-232 interfaces.  This allows the adapter’s design to be adjusted to various physical 
layouts depending upon the needs of the researcher.  The current schematic for the 
MavBlue Bluetooth module is provided in Figure 6. 

The schematic for the MavBlue module is based on a design from NSM Technologies.  
The adapter was originally developed to support the Maxell MBM02 Bluetooth chip.  
However, production versions of that chip are no longer available.  The schematic has 
been modified to now use the Bluetronics Bluetooth module. 

The MavBlue module schematic has currently been adapted to two different physical 
layouts.  One layout is based on low-cost production and uses a standard 9-pin RS-232 
interface to connect to the host computer (see Figure 7).  The second layout is based on a 
72-pin SIMM form factor and allows the module to be integrated with TINI and SNAP 
embedded platforms (see Figure 8).   



 

Figure 6.  MavBlue Bluetooth Module Schematic 
 



 

Figure 7: An Example 9-pin RS-232 Bluetooth Configuration 
 

 

Figure 8: An Embedded SNAP Development Platform 



 

Figure 9.  MavBlue Primary User Interface  
 

MavBlue User Interface 

The MavBlue user interface is illustrated in Figure 9.  The user interface is divided into 
three primary regions; a graphical view, a tree view, and a tabbed view.  Each region 
provides a differing perspective on the Bluetooth network.  The graphical view provides a 
visual indication of the devices participating in the same piconet as the local device.  In 
the example, the piconet is currently empty.  The tree view provides a view of the local 
and remote devices.  It is the intent of the tree view to list the devices along with the 
services provided by those devices.  However, this functionality is not yet implemented.  



The tabbed view provides a detailed listing of the local device and all known remote 
devices.  In addition to providing the user with information pertaining to known devices 
and the current configuration of the piconet, the MavBlue user interface also provide the 
functionality of the JSR-82 Bluetooth Control Center.  Additional details on the design 
and implementation of the MavBlue user interface can be found in [7] 

Conclusions and Future Enhancements 

The MavBlue development kit provides students with complete accessibility to Bluetooth 
hardware and software in order to Bluetooth technology.  In order to be of greater benefit 
to future researchers, the MavBlue development kit should be extended with the 
following capabilities: 

 Dynamic invocation of applications from within the MavBlue environment.  The 
MavBlue environment should allow the developer to run Bluetooth applications 
from within the MavBlue environment.  The applications would be invoked on 
the local host computer and becomes services available from the local device. 

 Simulated radios using multicast sockets.  In many research activities, it is 
necessary to simulate the existence of additional devices.  Copies of the MavBlue 
environment could be initiated on remote workstations that are networked on a 
standard TCP/IP network.  The Bluetooth protocol stack can simulate Bluetooth 
packet communication by transmitting baseband packets as UDP/IP multicast 
messages. 

 The current MavBlue environment are limited to the HCI, L2CAP, and SDP 
protocols.  The MavBlue environment should be extended to support all of the 
Bluetooth protocols.  This will enable the user interface to automatically 
configure the local device to a specific Bluetooth profile. 

 The current MavBlue implementation uses the standard Java XML bindings to 
access the persistent storage.  The Java XML binding is specific to J2SE and 
J2EE, but not supported for J2ME as the binding is too memory intensive for 
J2ME devices.  The MavBlue user interface should be modified to use a less 
resource intensive XML binding such as MinML. 

 The current MavBlue Bluetooth module is limited to UART communication with 
the host computer.  On many architectures, this effectively limits the host 
communication to 128Kbps and, therefore, does not allow the host computer to 
fully utilize the available Bluetooth data rate.  The MavBlue Bluetooth module 
should be enhanced to support both UART and USB communication with the host 
computer. 



References 

[1] Bluetooth SIG. (2001) Specification of the Bluetooth System – Version 1.1, 
Volumes 1 & 2.  February 2001. 

[2] Douglass, B. (2000). Real-Time UML: developing efficient objects for embedded 
systems.  Reading, MA: Addison-Wesley Longman, Inc. 

[3] D. Geary. (1999) Graphic Java 2, Volume 2: Swing (3rd edition). Prentice Hall 
PTR, 1999. 

[4] Held, G. (2001). “Data Over Wireless Networks”.  McGraw-Hill. New York, NY, 
2001 

[5] B. Hopkins, & R. Antony. (2003) Bluetooth for Java. New York: Springer-Verlag, 
2003. 

[6] C. Kumar, P. Kline, & T. Thompson. (2004) Bluetooth Application Programming 
with the Java APIs. San Francisco: Morgan Kaufmann Publishers, 2004. 

[7] Loi, P., & Case, S. (2004). Development of the User Interface for the MavBlue 
Development Environment.  Midwest Instruction and Computing Symposium, 
April 16-17, 2004.  Morris, MN. 

[8] Rabaey, J., Ammer, M., da Silva, J., Patel, D., & Roundy, S. (2000). “PicoRadio 
Supports Ad Hoc Ultra-Low Power Wireless Networking”.  Computer.  July 2000. 
pp. 42-48. 

[9] R. Riggs, A. Taivalsaari, & M. VandenBrink. (2001) Programming Wireless 
Devices with the Java 2 Platform, Micro Edition. Boston: Addison-Wesley, 2001. 

[10] M. Robinson, & P. Vorobiev. (2003) Swing, second edition. Greenwich, CT: 
Manning Publications Co., 2003. 

[11] K. Topley. (2002) J2ME in a Nutshell. Sebastopol: O’Reilly, 2002. 

[12] J. Y. Wilson, J. A. Kronz. (2000) Inside Bluetooth Part I.  Dr. Dobb’s Journal. 
25(3). pp. 62-70, 2000. 

[13] J. Y. Wilson, J. A. Kronz.  Inside Bluetooth Part II.  Dr. Dobb’s Journal. 25(4). pp. 
58-64, 2000. 


	Introduction
	Bluetooth Protocol Stack Overview
	The RF Layer
	The Baseband Layer
	The Link Manager Layer
	The Logical Link Control and Adaptation (L2CAP) Layer
	Java and JSR-82

	MavBlue Development Kit Components
	MavBlue Bluetooth Protocol Stack
	MavBlue Bluetooth Module
	MavBlue User Interface

	Conclusions and Future Enhancements
	References

