
Extreme Programming in the Liberal Arts

Classroom: A Progress Report

Richard A. Brown
Professor of Computer Science

rab@stolaf.edu

Aubrey F. Barnard
Student

barnard@stolaf.edu

Matthew T. Bills
Student

bills@stolaf.edu

Michael W. Bongard
Student

bongard@stolaf.edu

Aaron F. Etshokin
Student

etshokin@stolaf.edu

Theodore M. Johnson
Student

johnsotm@stolaf.edu

Michael R. Zahniser
Student

zahniser@stolaf.edu

St. Olaf College

Abstract

Extreme Programming (XP), a “lightweight” or agile process for software develop-
ment, adheres to twelve practices in a disciplined, non-traditional methodology. This
process was applied in a 13-person team project for a course at St. Olaf, a liberal
arts college, including both advanced and less experienced students. Observations
and recommendations based on this experience are reported.



Introduction

Kent Beck’s Extreme Programming (XP) (Beck, 2000) turns the traditional “waterfall
model” of software development on its head. Instead of beginning by carefully defining
the features desired for a software system, then thoroughly specifying design, then
coding, then testing, all before each extensive software release, XP calls for building
tests first, then implementing, then thinking about (minimal) design, in a frequent
succession of completed end-to-end systems.

A program-first, design-later approach to software design, so contrary to messages we
have diligently instilled in our students, sounds heretical and foolhardy, like a step
backward. Yet Beck claims great effectiveness for the XP strategy, including unusu-
ally high productivity and software products with improved, not worsened, flexibility
to adapt to changing requirements. A closer look shows that XP is far from a naive
“program-first-without-thinking” approach. XP may break traditional rules, but the
new methodology in fact incorporates a high degree of discipline and thoughtful reflec-
tion on the software development process. Beck argues that the existence of powerful
modern software tools, such as integrated development environments, version control
software, and languages such as Java that support rapid software development, enable
a tightly cooperating software team to respond to changes during software develop-
ment with such speed and fluidity that the team can safely skip highly structured,
painstaking up-front planning. An open-minded consideration of reasoned challenges
to standard approaches is appropriate for the study of software development in a
liberal arts computer science program.

We applied XP methodology in a semester-long course-based programming project to
build a practical networked application, employing a client-server architecture with a
graphics user interface and database “back-end,” during Fall 2003. The thirteen stu-
dents in the class formed a single team; each had prior experience with waterfall-model
software development in C++, but additional experience diverged greatly among in-
dividual students. Implementation was in Java and SQL, with communication struc-
tured using XML—new languages to most of these students. The instructor took on
the end-user “client” role.

We will review the elements of XP, then describe our project more fully and make
some observations.

The discipline of Extreme Programming

XP is an example of a lightweight or agile process in software design, along with such
methodologies as (“Scrum”, 2004). In reaction to the burden of extensive processes,
comprehensive documentation, and á priori planning of traditional software devel-
opment methodologies, agile software processes place greater value on interactions



among individuals, documentation on an as-needed basis that focuses on overall de-
sign rationale, collaborative relationships with customers, and flexibility to respond to
changes (“Agile Manifesto”, 2001), (Martin, 2002, Chapter 1). Beck argues that the
cost of making significant changes in requirements during software development is no
longer prohibitive, given modern software development tools. Hence, a software team
may freely invest in production stages of the software development process, rather
than focusing on thorough pre-production planning, as long as the team observes
crucial safeguards such as good communication, constant feedback, and a focus on
simplicity (Beck, 2000, Chapter 5).

Creating software with XP involves a series of short (e.g., two week) iterations, con-
ducted using XP practices that include the following (Beck, 2000, Chapter 10):

• the planning game, a strategy for planning the work for an iteration (see below);

• small releases, i.e., iterations, each representing a complete end-to-end system
in some sense;

• the use of metaphor to describe the architecture of a system;

• simple design, defined as a design that satisfies all current tests, has no du-
plication of logic in the implementation, includes every intention important to
the programmers, and has the fewest possible classes and methods—a design
minimally sufficient for the current needs rather than one that speculates on
future needs;

• unit testing, or writing automated tests of all functionality before any implemen-
tation, creating an ever-expanding criterion for the evolving system to satisfy;

• refactoring, a policy under which any team member may rewrite existing code,
no matter who originally wrote it, whenever rewriting leads to simpler design
(e.g., elimination of duplicate logic);

• pair programming, with two people working at one computer, one person using
the keyboard and mouse and thinking about expedient implementation, and
the other person thinking more strategically, with frequent swapping of paired
individuals (e.g., twice or three times per 8-hour day in a professional setting);

• collective ownership, in which everyone takes responsibility for an entire system,
and any pair may make improvements in any part of the system that further
that pair’s task;

• continuous integration, or adding new code to the system on a daily basis or
more frequently, as soon as all unit tests for the entire system succeed with that
new code added;



• a “40-hour week,”, meant as a limitation of overtime in a professional situation
(never a second week of overtime in a row);

• an on-site customer, a future end-user of the desired system, who sits on the
team; and

• coding standards, voluntarily agreed upon in advance by the entire team, em-
phasizing communication and facilitating practices such as swapping pairs and
refactoring.

The planning game seeks to determine the scope of the next iteration rapidly by
combining user priorities and technical estimates. The goal of the game is to maximize
the value of the software produced by the team, deducting the cost of development and
risk incurred during development, where risk is the estimated potential for inaccuracy
in cost estimates. The strategy calls for investing as little as possible to produce the
most valuable functionality (as assessed by the end-user representative) in the least
time, while reducing risk, then to iterate. During the planning game, the end-user
representative on a team describes desired features as stories in terms of the project’s
metaphors, and the software development team devises tasks to accomplish the stories
in an iteration. The user decides scope, priority, requirements for an iteration in terms
of stories, and sets iteration completion dates. The software developers estimate the
time or effort required for tasks or stories, identify technical choices forced by the
stories, decide how tasks will be implemented, and determine detailed scheduling.
The moves of the planning game represent a structured negotiation between the user
and the software developers, with the user focusing on functionality represented in
stories and developers forecasting time requirements and risk.

Benefits claimed for XP include improved productivity, a favorable experience for
programmers, and higher end-user satisfaction.

Although pair programming has enjoyed increasing visibility in the CS education
community since 2000 (Williams and Kessler, 2002) and (Hanks, 2004), and sessions
on teaching with XP have begun to appear at conferences (Eckstein, 2003), (Haz-
zan et al., 2004), attempts at applying the complete collection of XP practices have
appeared rarely if ever in projects for liberal arts CS courses.

The ACE project

St. Olaf’s course CS 284, Client-Server Applications (CSA), seeks to explore the
computer science behind modern web-based applications by surveying basic concepts
and technologies and by applying them in a team project. CSA counts as a core
course toward St. Olaf’s newly developed CS major curriculum (Brown, 2003). Rather
than focusing on higher-level web software architecture as in (Lee, 2003), this course



surveys Java-level network programming, client and server technologies, graphics user
interfaces (GUIs), and databases with SQL. All students have taken a Scheme-then-
C++ introductory sequence, including a course in software design featuring a life-
cycle based team software project in C++ using waterfall-model methodology, UML
language for planning object design, thorough “plan-first” documentation in multiple
phases using locally developed XML document templates, and a modest multi-stage
ethical analysis.

In the Fall, 2003 first offering of CSA, the majority of students had no prior experience
with Java or SQL programming, nor with XML programming models or document
type definitions. One senior in the class spent a month full time in Summer 2003
planning for the CSA course project together with the professor. Of course, this plan
was discarded when we actually began the course project using XP methodology.
However, having a student on the team who had already thought in depth about
how to build such software provided a counterpart of the experience that professional
programmers would likely bring to such a project. Several other seniors brought
extensive student project backgrounds to the work, from other course work, under-
graduate research projects, and internship experiences. Thus, the class fell naturally
into two categories of students, an advanced group and a group with little if any CS
experience beyond the course’s prerequisites.

The goal of the software project was to support online management of requirements
for students toward their major and/or concentration programs. In Mathematics,
Statistics, and Computer Science, St. Olaf has traditionally negotiated the require-
ments for a major or concentration on an individual contract basis, referring to general
guidelines for those programs. This system sought the following goals: to assist stu-
dents in creating, submitting, and retrieving specific contract proposals that satisfy
the guideline criteria; to aid program directors in viewing, responding to, and approv-
ing those student contracts; and to support aggregate analysis of collected contracts.
The CSA students dubbed this system ACE, the Academic Contract Explorer. The
instructor presented some initial implementation decisions: Java language for client
and server, using an applet for the client; SQL database for storage; and XML for
expressing both individual contracts and credentials, i.e., representations of guidelines
for a major or concentration program.

The members of the class entered the project team in stages.

• Two advanced students with strong backgrounds who already knew Java well
immediately began working on an authentication strategy that would allow
users to enter their standard campus passwords without fear of compromise
in this student-developed software system. Meanwhile, the remaining students
studied Java, principles of GUI construction, network programming, and ele-
ments of concurrency through a series of labs.



• The remaining advanced students worked at double pace on labs, then joined
the authentication pair to form the first-iteration team. That iteration produced
a rudimentary functioning end-to-end infrastructure system for the project.

A brief introduction to XP practices and philosophy for the entire class took
place before this first iteration, but only the first-iteration team carried out the
initial planning game. The instructor played a dual role of general manager/end-
user representative: he communicated the strategies of XP methodology and
structured planning-game meetings by identifying specific goals and time limits
within each meeting; and he provided the stories and assigned their priorities.

• All students joined together for two subsequent iterations, once everyone had
seen presentations of all the Java-based material. The instructor continued
serving as both manager and end-user representative.

Material on databases, SQL, and XML was presented in parallel with the second and
third iterations. Students received introductions to the Eclipse IDE, CVS revision
control system, and other technical systems during in-class laboratory sessions near
the beginning of the second iteration.

The class met as a whole for two 85-minute periods per week; two or three additional
key planning sessions took place during a weekly campus meeting time. In addition,
students arranged pair-programming times on their own, and met as a group on many
Saturdays.

To document contributions to the project, a web-based time logging system was
developed, with drop-down menus for easy contemporaneous entry of time durations
and identifying information. The log page supported itemization of activities (e.g.,
particular stages of planning, pair programming, communication such as e-mail),
indication of whom one was pairing or teaming with, and entry of descriptive notes.

Messages sent to a course e-mail alias, heavily used for project purposes, were archived
for retrieval by anyone in the class.

Observations

Our experience leads us to the following observations.

Quality of educational experience.

Our strongest and best-prepared student team members exhibited remarkable lead-
ership and initiative in the project. They claimed personal ownership of the process,



researching XP methodology on their own, independently initiating and conducting
the regular Saturday meeting times, making impromptu presentations at meetings,
and carrying out XP practices to the best of their abilities. The instructor set the
stage in various ways, such as enunciating the nature of this XP experiment, orches-
trating team meetings that took place during class time, and encouraging leaders
(individually) to make a good faith effort to include all team members. But the team
as a whole accepted the challenge and pursued it, and the leaders, who comprised
about half of the class, brought an outstanding and cooperative attitude to the effort,
demonstrating long patience with their less experienced teammates. For example,
knowing that they could accomplish tasks quickly and effectively among themselves,
the leaders nevertheless sought to pair with newcomers in the second iteration, and
even decided to give formal responsibility for completing third-iteration tasks to those
newcomers.

However, less experienced students found it difficult to join the ongoing project effort.
A few of those with minimal prior backgrounds for the course showed initiative and
made significant contributions. But many of the less experienced students did not
feel prepared for the task, and although they expressed initial enthusiasm about the
project, commitment waned for some as the project continued. By the end of the term,
the disparity of commitment between the leaders and those who remained behind on
their Java assignments had become a frustration and disappointment among some of
the leaders, who privately and respectfully expressed their concerns to the instructor
in person and in an end-of-course questionnaire.

An analysis of student log entries and archived e-mail messages quantifies the per-
ceived differences in effort among team members. In Figure 1, students are identified
according to their absolute ranking in number of hours reported via electronically sub-
mitted time logs, e.g., student S3 reported the third largest number of actual hours.
An asterisk denotes the graduating seniors, who also constituted the first-iteration
team. Columns in the table represent actual amounts reported through two months
of logs and archived project e-mails, multiplied by 1.0 for members of the first itera-
tion team and by 1.5 for those who joined the project for only the second and third
iterations. These weight factors roughly compensate for the additional time that first-
iteration team members could contribute to the project, since lengths of iterations
were approximately equal, excluding breaks. These figures actually underestimate
the full contributions of seniors, since logging was unavailable for some of the first
iteration; the figures also exclude early authentication work carried out by students
S1 and S2. Columns of Figure 1 indicate the number of hours reported in logs as
being spent on the project (outside of class), the number of logs submitted, the num-
ber of times a students received or gave a citation of collaboration in a log, and the
number of project e-mails sent. These entities represent simple software metrics, or
quantitative indicators of performance. While no single metric provides a sufficient
measure of the work, collectively they present an aggregate image of contribution
toward the team project.



logged log citations emails

student hours count received given archived

S1* 117.2 27 21 28 18

S2* 87.8 32 17 23 17

S4 61.3 33 22.5 24 21

S3* 57.1 28 10 21 12

S5* 39 17 30 11 4

S6* 36.7 11 5 17 4

S8 32.3 19.5 30 7.5 6

S9 29.9 16.5 9 16.5 10.5

S7* 25.4 9 12 15 4

S10 21.1 13.5 7.5 7.5 9

S11 11.5 9 4.5 4.5 3

S12 0 0 10.5 0 1.5

S13 0 0 6 0 3

mean 39.9 16.6 14.2 13.5 8.7

mean of seniors 60.5 20.7 15.8 19.2 9.8

mean of
non-seniors:

all 22.3 13.1 12.9 8.6 7.7

excluding S12,S13 31.2 18.3 14.7 12 9.9

Figure 1: Weighted analysis of student contributions to the ACE project over a two-
month period. Asterisks (*) indicate seniors (first-iteration team). Weights roughly
compensate for those who joined the project at the second iteration.



A comparison of means shows that senior students surpassed non-seniors on average
in every category derived from logs submissions, even after weighting and underes-
timation of work done by the first-iteration team. The greatest contrast appears in
number of hours on task reported: even after omitting the two students who made no
log submissions, the average senior logged about twice as many hours as the average
non-senior after weighting.

We believe this dichotomy between more and less experienced students can be ad-
dressed by providing more support for learning Java. Two 85-minute class meetings
per week was simply too little contact time for all the needs of the course: presenting
Java and background concepts to advanced students, and later to younger students;
working with one and sometimes two groups of advanced students; and providing lab-
oratory support for the Java exercises. Laboratory support suffered as a result. Note
that these same Java lab materials had proven effective for a comparable audience in
prior courses which included adequate support time for learning. Also, non-seniors
who took advantage of instructor office hours and later, optional catch-up lab sessions
became full participants in the project: student S4 became a project leader by any
measure, even without the weighting factor; and other non-seniors performed well
in several categories. We conclude that a larger proportion of less experienced stu-
dents will likely become stronger project contributors in future offerings of the course,
provided that they receive sufficient support in learning the basics.

XP practices

The XP practices fit liberal arts values in many ways. The entire methodology relies
heavily on good communication skills, for example, when playing the planning game
and when pair programming. The high degree of teamwork required and the many
opportunities for cooperative leadership develop qualities we associate with a liberal
arts education. And XP’s alternative approach to software development demands
a high degree of open-mindedness for those accustomed to other, more standard
software methodologies.

We found it best to adhere to the entire set of XP practices, as far as possible.
For example, we tried phasing in unit testing after our first iteration, believing this
might make a reasonable transition to the methodology in the early going. But
then, we lacked unit testing’s objective, automated criterion for determining when
an iteration was complete. Unit-tests add a measure of confidence in one’s product
for programmers at all levels of ability. (We readily assert that no amount of testing
can prove a program correct; our students are steeped in this truth before arriving
at the CSA course.) Furthermore, retrofitting unit tests for the first iteration while
simultaneously creating unit tests for the second iteration was a complex and difficult
task. Next time, we will definitely apply the unit testing philosophy from the outset.



Pure XP assumes that the entire team can work in the same room throughout the
work week, an impractical assumption for us. Indeed, even scheduling time to work
in pairs presented significant challenges for our students, with their other courses
and activities. We attempted to compensate for this shortcoming with electronic
communication. Many of the messages sent to the class e-mail list simply stated
that the sender would be in the lab at a specified time and invited team members
to pair with that person. One advanced student even developed a small networked
application to support team communication needs, as a personal spare-time project.
Even with electronic support, the basic problem of effectively finding meeting times
for pairs and larger groups remains as a major challenge.

Classes incorporating XP projects will benefit from all available scheduled class meet-
ing time. Our next offering of CSA will include three 85-minute meetings per week
instead of two.

Course management.

In XP, project managers direct work largely by serving as a coach for team members,
intervening when necessary, and by tracking metrics of a team’s progress and posting
the results (Beck, 2000, Chapter 12). The manager chooses which metrics to track
and post, thus drawing a team’s attention to specific issues. This image of coaching,
intervening, and tracking project management largely describes the role that the
instructor took in our project, except that little metric feedback was posted (only
reviews of progress toward task deadlines during class meetings).

Tracking task deadlines served to move the project along, but other metrics could have
helped shape and improve the team’s process in specific ways. For example, sharing
statistics (without names) on hours logged per person with the team as a whole might
well have encouraged under-performing team members to spend more hours on the
project; publishing the number of e-mail requests for pair partners sent to the course
e-mail alias might have promoted such communications; later, determining how many
pair-partner requests were satisfied and looking for trends among such figures might
have encouraged pair activities. Although our student leaders didn’t need such prods,
we believe that metric-based feedback would inform less-experienced students about
project expectations and where to put their energies, particularly if we also notify
individual students of their own ratings relative to each metric scale.

We will probably use advanced students as a “first-iteration team” again, anticipating
that an alternate-year core course will always include students with a broad range
of experience. However, we must proceed more intentionally with integrating the
remaining, less experienced students into the second-iteration effort. We tried con-
sciously pairing advanced students with younger students, and we tried assigning task
responsibilities to the younger students, but neither of these approaches alone solved



our integration problem. Preparing the less experienced students better in the Java
language and using progress metrics as a motivational strategy will undoubtedly help.
In addition, we will probably add some explicit training in effective pair programming
to the course (Williams and Kessler, 2002). We hope that measures such as these
will address this non-trivial problem of integrating new people into the ongoing team
project.

Finally, we plan to use a student teaching assistant in our next offering of CSA,
ideally a veteran of the prior offering. For example, this person could: assist students
with Java laboratories during class meetings while the instructor works with any
advanced team(s); assist with technical setup for the project; and serve as an after-
hours resource for the team as a whole. If the teaching assistant already knows XP
methodology, he/she could convey those principles and practices as well.

Conclusion

To summarize our observations:

• An XP project gives advanced students an opportunity to develop their leader-
ship skills and broaden their experience in software development methodologies.

• Less experienced students naturally require additional direction and training in
the skills needed for an XP project.

• XP projects demand communication skills and cooperative work, highly appro-
priate for the liberal arts.

• Compromises on individual XP practices appear to undermine the results of
that methodology.

• XP projects in college courses struggle for meeting time, prompting extended
course-meeting schedules and electronic communication for arranging meetings.

• As an XP project manager, an instructor coaches, intervenes only if necessary,
tracks metrics assessing project progress, and posts analysis of metrics to mo-
tivate the team.

• For classes with multiple levels of student background, better prepared students
may serve as an “advance team” within the XP framework. In that case, inte-
gration of remaining students into the ongoing project requires careful attention;
explicit training in effective pair programming may help.

Acknowledgments



Besides the co-authors, the students in the Fall 2003 CSA course were Robert L.
Crawford, Noah J. Dove, Rylan Z. Gibbens, Ari J. Gronning, Joel J. Johnson, Joel
S. Landsteiner, and Justin E. Von Stroh. Although not everyone could be listed as
a co-author, the students listed here made important contributions while advancing
their applied and project skills in an experimental course that turned out to have
higher expectations than anticipated.

Bob Breid, Systems Administrator at St. Olaf’s Department of Information and In-
structional Technologies, helped with the authentication system.

References

“Agile Manifesto” (2001). Manifesto for agile software development. Retrieved
March 11, 2004, from http://agilemanifesto.org/.

Beck, K. (2000). Extreme programming explained: Embrace change. Addison-Wesley.

Brown, R. A. (2003). Requirements for a CS major. Retrieved March 11, 2004, from
http://www.stolaf.edu/depts/cs/academics/major.html. St. Olaf’s CS
major was introduced in 2002.

Eckstein, J. (2003). The first extreme educational symposium: A special forum for
teachers in extreme programming and agile processes. Retrieved March 11,
2004, from http://www.xp2003.org/EduSymCfP.html.

Hanks, B. (2004). Pair programming bibliography. Retrieved March 11, 2004, from
http://www.cse.ucsc.edu/ brianh/PairProgramBib.html.

Hazzan, O., Bergin, J., Caristi, J., Dubinsky, Y., and Williams, L. (2004). Teaching
software development methods: The case of extreme programming. In
Proceedings of the Thirty-Fifth SIGCSE Technical Symposium on Computer
Science Education, pages 448–449. Panel.

Lee, A. H. (2003). A manageable web software architecture: Searching for
simplicity. In Proceedings of the Thirty-Fourth SIGCSE Technical Symposium
on Computer Science Education, pages 229–233.

Martin, R. C. (2002). Agile Software Development: Principles, Patterns, and
Process. Prentice Hall.

“Scrum” (2004). Scrum development process. Retrieved March 11, 2004, from
http://controlchaos.org/.

Williams, L. and Kessler, R. (2002). Pair Programming Illuminated.
Addison-Wesley.


