
Reconsidering the Elementary Courses in

Computer Science

Richard A. Brown
Department of Mathematics

St. Olaf College
rab@stolaf.edu

Abstract

A collection of four foundation courses is proposed for introductory computer sci-
ence (CS) at a liberal arts college. A breadth-first, multi-paradigm CS1 course serves
as the prerequisite for each of the remaining three foundation courses. This CS1
course, which has no prerequisites of its own, focuses on recurring concepts in CS
and development of abstraction and analytical thinking skills, made tangible through
Scheme programming exercises, and simultaneously serves CS majors and non-majors.
A C++-based course in software design and implementation develops programming
skills, introduces notions of software engineering, and includes a waterfall-model team
software project. A standard computer organization course and a Scheme-based
mathematics course complete the collection. These courses address various national
curricular recommendations and satisfy local goals for CS in a liberal arts college.



Introduction

A liberal arts college faces many challenges when designing and implementing elemen-
tary courses in Computer Science (CS). National curricular recommendations from
the CS professional societies such as Computing Curricula 2001 (“CC2001”, 2001)
seem oriented toward universities, which typically house much larger scale operations.
Liberal arts institutions place their values in different directions, e.g., expecting small
major programs that leave over half of a student’s total credit load for coursework in
non-major courses. Small, often private, undergraduate-only schools face very differ-
ent practical constraints than large universities with graduate students (Walker and
Schneider, 1996). Even though liberal arts institutions can certainly meet these chal-
lenges through standard introductory sequences, there remain many choices to make.
For example, CC2001 identifies six distinct approaches to the introductory course
CS1, each of which has many realizations in terms of text and syllabus (“CC2001”,
2001, Appendix B). Most of these approaches adopt a “depth-first” strategy, which
might not seem optimal for an institution that wants to offer a counterpart of the
survey courses commonly offered as introductions to other disciplines. How can a
college best match its early CS courses to its local objectives and campus context?

Many colleges have developed new elementary courses in their searches for responses
to these challenges. For example, some institutions have introduced locally developed
“prequels” to CS1, often called “CS0” courses, that present a broad image of the
discipline of CS and/or appeal to students who might not otherwise take a CS1
course. These courses have enjoyed considerable success at some liberal arts colleges.
However, the effectiveness of a CS0 course depends heavily on local factors. Does a
particular version of a CS0 course draw students who are unlikely to continue in CS? If
the CS major does not require CS0, what incentive will CS0 students have to continue
in CS? If CS0 becomes required for majors, perhaps providing them with a valuable
initial overview of the discipline, can the number of required courses be increased
while respecting the liberal arts context of the CS major, or must another requirement
be dropped? This example of CS0 illustrates the complexity and difficulty of finding
elementary CS courses that meet the manifold goals of a particular liberal arts college.

St. Olaf College has evolved its elementary course offerings over a fifteen-year period,
arriving at a non-traditional collection of courses that addresses local institutional
goals, including compactness and flexibility of the major program, access for non-
majors, a breadth-first introduction to the discipline, and a good institutional fit
with our liberal arts environment. We hardly claim that our approach would work at
all colleges, but we hope that parts of our model may help other institutions as they
seek better and better elementary courses for their own unique college contexts.



Principles of
CS (CS1)

Software
Design and
Impl. (SD)

Hardware
Design (HD)

Mathematical
Foundations of
Comp. (MFC)

Figure 1: Foundation courses in CS at St. Olaf.

Institutional context

St. Olaf is a private undergraduate college enrolling approximately 2800 students, lo-
cated in Northfield, Minnesota. A college of the Lutheran Church, St. Olaf is known
for strength in academics, notably in Music, Mathematics, and the natural sciences,
and for international and off-campus study. The Departments of Mathematics and
Physics initiated an interdisciplinary concentration in CS in 1974 under the direction
of Richard Allen. From the outset, the CS concentration emphasized both conceptual
principles of CS and hands-on application of those concepts. The program’s carefully
chosen example systems have heavily influenced both the program and its students.
For example, St. Olaf CS was among the earliest adopters of the UNIX operating
system west of the Mississippi (1974), a fact that urged our students toward early
strength in C programming and later involvement in the open source software move-
ment, including Linux. By the early 1990s, the CS concentration was no longer an
interdisciplinary program, now requiring six courses specifically in CS. Local fiscal
concerns prevented expansion to a CS major until a pivotal program review in 2002;
our first three CS majors will graduate in 2004.

The structure of the foundation courses in St. Olaf’s CS major (see Figure 1) was
developed during the days of the smaller concentration, and that structure for ele-
mentary courses has served us well as a basis for a full CS major program. Instead of
an introductory sequence, we offer a four-course “introductory tree” consisting of a
breadth-first CS1 course followed by a choice of second courses which may be taken
in any order. Each second course expands on an aspect of the discipline: Hardware
Design (HD); Software Design and Implementation (SD); and Mathematical Founda-
tions of Computing (MFC). CS1 has no prerequisites, although we advise less prepared
first-year students to get a term of college experience before taking CS1. The CS1
course is the sole prerequisite for each second course, although MFC effectively calls
for “mathematical maturity” at the general level of a calculus course, a reasonable
assumption at St. Olaf.



(define make-account
(lambda (init-bal) ;; state variable: initial balance for this account

(let ((bal init-bal)) ;; state variable: current balance for this account
(lambda (method args) ;; method name (symbol), list of args

;; NOTE: a function returned by this lambda is an account object
(case method

((show-balance) bal)
((show-initial-balance) init-bal)
((deposit) (set! bal (+ bal (car args)))

bal)
((withdraw) (set! bal (- bal (car args)))

bal))))))

Example calls:

(define acct1 (make-account 500.00))
(send acct1 ’show-balance) ;; Return value: 500.
(send acct1 ’deposit 150.00) ;; Return value: 650.
(send acct1 ’show-balance) ;; Return value: 650.
(send acct1 ’show-initial-balance) ;; Return value: 500.
(acct1 ’show-initial-balance ()) ;; Return value: 500.

Figure 2: Object-oriented programming. First, we define a constructor for objects in
the class Account, representing a simple bank account. Then, in the example calls, we
construct an Account object acct1, and call several methods using a function send
(definition omitted here). The final line shows how to call a method without send.

CS1, Principles of Computer Science

St. Olaf did not create a “CS1” course until 1989, near the end of Pascal’s dom-
inance as an introductory programming language. Our CS1 has used the Scheme
language from the beginning, at first following (Ableson et al., 1985), which provides
an outstanding education in CS. However, since that book’s underlying mathematical
expectations seemed too ambitious for many of our liberal-arts audience students, we
switched to (Springer and Friedman, 1989) early on. We soon found ourselves supple-
menting this text with presentations and exercises on documentation, invariants, etc.,
then with a different approach to teaching procedural abstraction, an introduction to
object-oriented programming concepts, and more, until the course had evolved dur-
ing the period 1992-1998 into a new entity with its own problem sets and manuscript
text.



insert-left
3 Arguments: Two Scheme values and any Scheme list.
Return: A list consisting of all elements of arg3 in order, except with each occur-
rence of arg1 immediately preceded by a new occurrence of arg2.

Example call:
(insert-left ’a ’z ’(a b c a)) ;Return value: (z a b c z a)

(define insert-left
(lambda (pattern insert lis) ; two Scheme values, any list

(letrec ((helper
(lambda (ls done)

;; ITERATION INVARIANT:
;; list ls holds all values of lis not yet seen
;; list done holds elements of lis already seen,
;; after inserting insert just before every
;; occurrence of pattern, in the original order
(cond
((null? ls) done)
;; assert: there is at least one unseen element
((equal? (car ls) pattern)
(helper (cdr ls)

(append done (cons insert (cons pattern ())))))
;; assert: first element in ls differs from pattern
(else (helper (cdr ls)

(append done (cons (car ls) ()))))))))
(helper lis ()))))

Figure 3: An example of documentation, tail recursion, and reasoning about pro-
gram correctness. The (iteration) invariant and the “asserts” outline a proof of the
correctness of an insert-left function definition satisfying the boxed specification.

In its current form, we describe our CS1 course as an introduction to the way computer
scientists think. We present new concepts in a strategic order; each daily step is simple
but subtle, with daily homework designed to check that new subtlety. Throughout the
term, students develop better and better facility with abstraction, as well as improved
analytical thinking skills. Although it is difficult to quantify these qualities of mind,
we find that investing heavily in these thinking skills in CS1 provides our students
with “intellectual headroom” that serves them well in later CS courses. For example,
nonlinear recursion and procedural abstraction become “old hat” before their second
CS courses, and a quick Scheme-based example suffices to jog their memories for
applications in new contexts.

Our CS1 is a “three paradigm course” that spends roughly equal time on functional
programming, imperative programming, and object-oriented programming, in that



order. Thus, we present recursion before iteration, a natural ordering for newcomers
to programming and an interesting twist for experienced programmers. Scheme has
no standard loop constructs, but one can program iteratively using tail recursion
(see Figure 3); this represents both iterative algorithmic thinking and actual iterative
computation, since Scheme is a properly tail-recursive language. Scheme closures
enable students to experiment with object-oriented programming, learn the associated
terminology, and explore notions such as inheritance using an object mechanism they
literally build themselves.

Despite the use of Scheme language, we view this CS1 as a breadth-first introduc-
tory course, not a “functions first” course, in the terminology of (“CC2001”, 2001,
Appendix B). Although we do not systematically survey subject areas in CS, we in-
clude fundamental ideas from many areas throughout the course. For example, we
introduce the system stack to describe the computational difference between iteration
and (non-tail) recursion; we speak of machine addresses and pointers when examining
the memory effects of making assignments to alter Scheme’s built-in linked lists and
underlying cons pairs (nodes); we count the number of operations performed when
comparing iteration and recursion, and compare the memory storage strategies of lists
and Scheme vectors (like arrays, but with an arbitrary type for each element); we em-
phasize documentation and introduce the notion of provably correct programming
by providing (English-language) specifications for functions and demanding invariant
assertions (“asserts”) from early in the course (see Figure 3); later, we add (loop)
invariants for iteration via tail recursion (Figure 3); etc.

Emphasis on principles provides another reason for viewing this CS1 as a breadth-first
course. We adopt the “recurring concepts” of (“CC1991”, 1991, Section 5.4) as our
collection of principles. The CC1991 task force identified fourteen recurring concepts,
such as “conceptual and formal models,” “levels of abstraction,” and “tradeoffs and
consequences,” which occur throughout the discipline, have a variety of instantia-
tions in multiple subject areas, and have a high degree of independence of particular
technologies. To quote the task force,

Recurring concepts are significant ideas, concerns, principles and processes
that help to unify an academic discipline at a deep level. An appreciation
for the pervasiveness of these concepts and an ability to apply them in
appropriate contexts is one indicator of a graduate’s maturity as a com-
puter scientist or engineer... Additionally, these concepts can be used as
underlying themes that help tie together curricular materials into cohesive
courses. (Section 5.4)

We comment on these principles at the ends of text chapters and in the classroom,
and they inform our course’s choices of content. We have taken them as a guide,
insuring that our course presents a deep view of the discipline, and developing further



“intellectual headroom” in our students at the outset of CS study.

Although this CS1 may sound intimidating, we find that students of any major can
succeed in this course. Scheme’s simple syntax, supported by a language-sensitive
editor (emacs), helps non-CS students get started with programming technology and
focus on the concepts more than the language expressions. Staffing a computing lab-
oratory at night with experienced CS students, together with instructor office hours,
has provided adequate support (we teach the course without a closed lab). But the
most essential key to success is daily homework applying and reinforcing each new
concept. We ask students to work out each solution logically, by hand, writing out
every symbol of each language expression and seeking thorough understanding, before
entering that solution at the computer and testing it. We make this by-hand work
an expected part of the homework submission. Of course, some students do not fol-
low this regime carefully, but those who do gain very thorough understanding, and
invaluable sense of confidence and mastery over this material, whatever their back-
ground and interests. On the other hand, those who fall behind on homework almost
always get lost in the accumulation of small but subtle daily steps, suddenly finding
themselves feeling as if they have no idea what is going on in the course—even whose
with prior experience in CS. Such “lost” students can salvage their understanding and
confidence by going back to the earliest topics where they began to neglect a thorough
understanding, then to master that (and subsequent) material, for example, through
more disciplined by-hand-first work. The author knows of no other course in any
discipline that depends so heavily on daily homework: so seemingly impossible for al-
most anyone who doesn’t do the homework; and so tractable and confidence-building
for almost anyone who keeps up with the daily work, including those with no prior
exposure to programming or CS.

SD, Software Design and Implementation

Although we introduced a CS2-like course in early 1993, the second course’s focus
meandered until we developed the current Software Design and Implementation dur-
ing the five-year period 1998-2002. As the name suggests, SD emphasizes elements of
software engineering; a subsequent course Algorithms and Data Structures includes
many topics that might commonly be found in a CS2 course.

For many reasons, we have students program in C++ language for the SD course. We
eagerly want our students to see CS1 principles and thinking patterns in a contrasting
language, so they may know they weren’t just about Scheme. C++ forces students
to grapple with syntactic complexity, a necessary skill; emphasizing concepts known
since CS1 helps keep syntax from becoming the overwhelming focus. We choose
C++ rather than C for the object support; we choose C++ rather than Java so we
can explore lower-level issues more concretely. In particular, we emphasize memory
management, including local, dynamic, and static allocation and proper deallocation,



and we incorporate significant programming with pointer variables, building on earlier
programming with cons pairs in CS1. Once students have programmed in both
Scheme and C++, they can readily “come up to speed” in many other programming
languages, having seen two relative “extremes” among high-level languages.

SD is our only CS course that includes a weekly “closed” laboratory meeting. The
syllabus of SD has three parts, roughly equal in length: a transition from Scheme
to imperative programming in C++; a succession of C++ classes, exploring memory
storage alternatives and relationships between classes; and a team project using a
waterfall-model software life-cycle. The first part naturally focuses more on basic
issues, including loop statements, programming with pointers, references, and const,
parameter passing options, etc. The second part begins the course’s software engi-
neering emphasis: each day’s assignment calls for implementation of a new class using
that day’s new technique or memory strategy, according to a standardized structured
specification of that class. The team project involves many forms of writing: a user
manual (which serves as an informal requirements specification); UML-based design
decisions for class relationships and roles and for key algorithms; specifications for
each class adhering to the course’s standard; etc. Each team is responsible for assem-
bling these documents on a web site; students produce many of the documents (e.g.,
class specifications) using locally developed XML document types.

We have recently added a writing-based four-stage ethical analysis of the project
following the ImpactCS grid analysis model (Huff and Martin, 1995). We provide
XML-based templates for these documents, and plan to move this ethics work to
the second part of the course, to compete less with the project and to give students
experience with the mechanisms of our local XML document system in advance of
the project itself. This adds a context of ethics, social issues, and professional re-
sponsibility to the software design work, and prepares the way for serious study of
computing ethics later in the CS major.

From a practical viewpoint, the biggest challenge in designing SD was creating a
transition from Scheme to C++ that took direct advantage of the CS1 experience. For
example, the first lab and subsequent homework assignments now build on a simple
(provided) implementation of Scheme-like lists (of strings), developing a library of
C++ functions patterned after Scheme counterparts, with “iteration” accomplished
at first through tail recursion. Also, we consistently introduce new topics in the
context of prior Scheme work. Given this Scheme-transition need and the low-level
emphasis on software engineering, we are unable to find a textbook that truly fits our
course. Thus, we have developed a substantial body of online notes, examples, and
exercises; we often supplement this with a C++ language reference such as (Deitel
and Deitel, 2003).

The primary challenge of SD is the extensive time required for the daily work. We
view SD as the most time-intensive CS course we offer, and advise students to avoid



taking other time-consuming courses during the same term as SD. We would rather
not have a course with such substantial time-management issues so early in the CS
curriculum, but the overall strategy of developing solid programming and project
skills in a second course has worked well for later CS courses. Plus, CS1 and SD
together provide a valuable two-course package for non-majors and young majors
seeking internships.

HD, Hardware Design

Our Hardware Design course is a relatively standard computer organization course
based on (Tanenbaum, 1999). Computer Organization was the original CS course
at St. Olaf, as at many other schools. We have used Tanenbaum’s layered approach
to computer design for about 15 years, often updated with supplemental material as
needed (e.g., with information about newer processors as an edition ages). The mul-
tilevel layers of architecture present a compelling abstraction that appears in many
other contexts in computing, such as windowing software and network protocols (re-
call that “levels of abstraction” is a CS1 “principle”). We spend a short time on
network protocols at the end of the course to show an alternative layered architec-
ture, as well as to introduce some valuable concepts and terminology of computer
networking.

As our foremost goals for HD, we want every student to obtain a conceptual under-
standing of how a computer works, and to receive a broad exposure to the vast body
of computing terminology related to hardware. For instance, we examine a repre-
sentative example microprogrammed machine in considerable detail, then consider
successive enhancements leading toward the microarchitecture of a Pentium chip, in
order that students may understand microarchitecture issues, features, and terminol-
ogy (Tanenbaum, 1999, Chapter 4). We supplement this segment of the course with
discussion of alternative processors such as UltraSparc, and of more recent processors
such as Itanium. Note that Tanenbaum offers ample emphasis on RISC principles;
thoroughly examining a microprogrammed machine provides both historical and tech-
nological perspective, and offers a strong context for considering design tradeoffs in
processors such as Pentium, comparisons between architecture choices, etc. Tanen-
baum’s presentation of the design of multiple actual machines at each architecture
layer supports this approach, and also serves our local goal of presenting both con-
ceptual principles and realistic examples.

We include assembly programming in the course in a modest project, e.g., checking
input strings for palindromes, using a subset of Java Virtual Machine language and
a simulator. We don’t expect our students to become professional assembly pro-
grammers, but experience programming at this level offers invaluable tangible insight
about how computers work.



HD has only CS1 as a prerequisite. These students can readily understand the archi-
tectural concepts. The students’ greatest struggle concerns reading the book. Part
of this struggle is desirable, as throughout the course, students develop a capacity to
absorb and manage the necessary mounds of technical terms and details. But Tanen-
baum’s prose compounds the difficulty of this process. In particular, our students
find many of Tanenbaum’s exercises confusing and unclear. Over time, we have de-
veloped restatements and explanatory annotations for such exercises, and have added
exercises of our own.

Although our program has a goal of hands-on experience with principles, we do not
currently have the resources for a hardware laboratory associated with the course.
Instead, we content ourselves with short programming assignments, e.g., given sim-
ulated gates, to program a simulation of a one-bit ALU. Students may implement
these small individual projects using a programming language of their choice; the
projects tend to demand more from C++ or Java programmers than from Scheme
programmers, which appropriately asks more of those with experience beyond CS1.

MFC, Mathematical Foundations of Computing

Our new CS major requires a mathematics course designed for computer science stu-
dents, satisfying many of the “DS” (Discrete Structures) knowledge units in (“CC2001”,
2001, Chapter 5). MFC will serve as the prerequisite for core courses in Theory of
Computation and in Algorithms and Data Structures, and it may interest mathemat-
ics students seeking a “warm-up” course before Abstract Algebra and Elementary
Real Analysis. We are developing this course now, with a first offering in Spring
2005, perhaps using (Gries and Schneider, 1993) for partial text support.

Our strategy calls for building directly on the English-language reasoning in CS1,
moving to invariant assertions and iteration invariants stated in formal logical nota-
tion, basic logic, and formal proofs of program correctness. Thereafter we plan to
proceed to a study of standard proof techniques, such as induction and contradic-
tion, with applications to trees and graphs, sets and relations, basics of counting,
and discrete probability. Our version of CS1 (which possesses enough mathematical
content to satisfy the College’s Mathematics requirement) provides a head start on
some of the earlier topics, and the assumed calculus-level mathematical maturity will
also contribute to students’ success in this course.

Analysis

St. Olaf’s foundation courses satisfy numerous national curricular recommendations
for CS. For example, Figure 4 shows relationships between these courses and the
knowledge units of (“CC2001”, 2001, Chapter 5). Each course treats most of the



course CC2001 knowledge units

CS1, Principles of
Computer Science

PF1 PF2 PF3 PF4 PL7 SE10

SD, Software Design
And Implementation

SE1 SE3 SE4 SE5 SE7 SE8 SE10 OS5 PL6 SP3

HD, Hardware Design AR1 AR2 AR3 AR4 AR5 AR6 AR7 AR8 AR9 PL2

MFC, Mathematical
Foundations of
Computing

DS1 DS2 DS3 DS4 DS5 DS6 AL5

Figure 4: Analysis of St. Olaf foundation courses in terms of CC 2001 knowledge
units.

required units for a particular knowledge area: Programming Fundamentals for CS1;
Software Engineering for SD; Architecture and Organization for HD; and Discrete
Structures for MFC. Each course also addresses additional knowledge areas, for ex-
ample, Programming Language units in CS1, SD, and HD, and Social and Professional
Issues in SD. The union of knowledge units included in these foundation courses com-
plements core offerings in the CS major, so that a student who takes all foundation
courses and all core courses will encounter nearly every required knowledge unit in
CC2001 (Brown, 2004c), (Brown, 2004b).

The foundation courses compare favorably with the 2004 Model Curriculum for a
Liberal Arts Degree in Computer Science (Consortium, 2004). The new Model Cur-
riculum calls for multiple programming paradigms in the elementary courses, satisfied
in our CS1; it recommends an early course oriented toward software engineering, sat-
isfied by SD; the computer organization core course corresponds to HD; and we are
interested to learn that the model curriculum recommends a functional introduction
to the first mathematics course, called a “Mathematical Foundations” course (com-
pare MFC)! Our four foundation courses represent an alternative approach to the
Model Curriculum’s “basic courses,” and our major retains the Model’s structure of
basic courses, core courses, electives and a capstone experience.

An analysis of a syllabus for St. Olaf’s CS1 (Brown, 2004e) shows that the course does
indeed span the list of “recurring concepts” found in (“CC1991”, 1991), supporting
our contention that CS1 is a “breadth-first” introduction to CS in the sense of CC2001



(Brown, 2004a).

The foundation courses address numerous practical and local considerations for our
liberal arts CS major. Among the practical issues, the compact, tree-like prerequisite
structure enables students to access most core courses after as few as two semesters
of study (possibly requiring two courses in the second semester) (Brown, 2004d).
This benefits students who want to explore CS among other possible major interests,
and students who want to schedule a term abroad (common at our College). The
four foundation courses constitute a complete set of prerequisites for all core courses.
In our CS1, we offer a breadth-first introduction suitable for all majors (see below)
and required of CS majors without increasing the total number of required courses
for a CS major, as may result from adding a CS0 course. Furthermore, we have
found that the “software engineering second” strategy of SD pays off handsomely
in subsequent courses, because students emerge from SD possessing experience with
a structured team software project, a UML-based object-oriented design, awareness
of ethical issues and a grid-based ethical analysis of software, and with considerable
programming proficiency in a practical and complex programming language (C++).
As the SD course developed at St. Olaf, teachers of core courses soon noticed improved
programming and project skills among the students.

Among the local objectives for CS supported by the foundation courses, the breadth-
first CS1 serves many goals. Non-majors who take this single course emerge with
a relatively comprehensive view of the nature of CS, focused broadly on a survey
of concepts, and presenting an image of a computer scientist’s disciplinary view-
point. SD, HD, and MFC all make sensible choices of a second course depending on
student interests, and each of these choices constitutes a coherent two-course termi-
nal sequence, exploring software, hardware, or mathematical computer science. The
“software” combination CS1—SD provides students with a strong two-course back-
ground for internships or interdisciplinary work, as well as for subsequent courses in
CS. The experience of learning two languages in this two-course sequence drives home
the independence of technology possessed by CS principles, gives students some back-
ground in picking up new languages, and encourages open-mindedness toward choices
of programming language. SD emphasizes written and oral communication, consis-
tent with the liberal arts; the course can satisfy the College’s writing requirement.
In addition, the courses CS1, SD, and MFC (with its functional programming com-
bined with mathematics) all promote St. Olaf’s philosophy of emphasizing both CS
principles and “hands-on” experiences.

The breadth-first, no-prerequisites CS1 invites non-majors to try a CS course, and
provides them with access to the major. Figure 5 is drawn from the program review
of our former Concentration, a non-major program that preceded our current CS
major. This figure suggests that more students from different majors completed a CS
concentration as we developed our current approach to CS1 (this development took
place during the period 1992—1998). While there may be many explanations for



category
grad years

’85-’94
mean

grad years
’95-’01

mean
pct.change
in mean

Number of grads 91 9.1 78 11.1 +22.0%

Majors earned 105 10.5 93 13.3 +26.8%

Grads with
Math majors

73 7.3 38 5.4 -26.1%

Grads without
Math majors

18 1.8 40 5.7 +217.7%

Pct of grads
w/o Math maj

19.8% 51.1%

Count of
distinct majors
represented

13 20

Figure 5: Majors completed by St. Olaf CS concentrators. Note that a decline in
total Mathematics majors generally corresponds to the decline of CS concentrators
who completed a Mathematics major.



these changes, the notable increases in the last three rows in Figure 5 indicate that
our approach to CS1 did not drive away students in other disciplines. We believe
that this CS1 course becomes a way for students who may think of themselves as
“non-math people” to make a fresh start in learning analytical thinking.

We do not claim that these foundation courses satisfy all needs for all people. We
have recently introduced an accelerated course encompassing the material of CS1
and SD combined, to serve the needs students with prior programming experience
comparable to a high school AP course in CS. We have already noted the challenges
of heavy time expectations in SD, and may propose additional credit for the required
laboratory for that course. The MFC course currently remains in the concept stage,
and we anticipate that we will have much to learn from first offerings of that course.
Although we have long-term experience with the other three foundation courses, our
CS major is new, and its ongoing success remains to be established. Finally, only
St. Olaf has offered this package of elementary courses, to our knowledge. Can they
thrive on other campuses? Certainly, few colleges are willing to risk radically new
approaches to CS1, the primary entry point to the CS major.

Yet, perhaps some elements of these courses will assist other institutions in their
search for improvements in the elementary CS courses.

Acknowledgments

Richard Allen, the founder of St. Olaf’s CS program and my mentor, has profoundly
influenced these ideas, as have my CS teaching colleagues Matthew Richey, Steve
McKelvey, and Amelia Taylor. I am especially grateful to Steve as co-author of the
CS1 manuscript. Chuck Huff, our resident computer ethicist, is teaching me about
ethics and about the grid-based strategy for ethical analysis used in SD. Chuck also
gave feedback on an early abstract for this paper. Of course, input from many students
has deeply affected the development of these foundation courses.

References

Ableson, H., Sussman, G. J., and Sussman, J. (1985). Structure and Interpretation
of Computer Programs. MIT Press.

Brown, R. A. (2004a). A breadth-first introduction to CS. Retrieved March 11,
2004, from
http://www.stolaf.edu/depts/cs/academics/more/breadthfirst.html.

Brown, R. A. (2004b). CS body of knowledge. Retrieved March 11, 2004, from
http://www.stolaf.edu/depts/cs/academics/more/csbok.html.



Brown, R. A. (2004c). Listing of CS courses. Retrieved March 11, 2004, from
http://www.stolaf.edu/depts/cs/academics/courses/list.html.

Brown, R. A. (2004d). Overview of CS courses. Retrieved March 11, 2004, from
http://www.stolaf.edu/depts/cs/academics/courses/overview.html.

Brown, R. A. (2004e). Recurring concepts in St. Olaf’s CS1. Retrieved March 11,
2004, from
http://www.stolaf.edu/depts/cs/academics/more/cs1principles.html.

“CC1991” (1991). Computing curricula 1991. Retrieved March 11, 2004, from
http://www.computer.org/education/cc1991/.

“CC2001” (2001). Computing curricula 2001. Retrieved March 11, 2004, from
http://www.computer.org/education/cc2001/report/index.html.

Consortium (2004). A 2004 model curriculum for a liberal arts degree in computer
science. Draft dated February 27, 2004, distributed at SIGCSE 2004 Technical
Symposium, Norfolk, VA., on March 5, 2004.

Deitel, H. M. and Deitel, P. J. (2003). C++ How to Program. Prentice-Hall, fourth
edition.

Gries, D. and Schneider, F. B. (1993). A logical approach to discrete math. Texts
and Monographs in Computer Science. Springer.

Huff, C. W. and Martin, D. (1995). Computing consequences : A framework for
teaching ethical computing. Communications of the ACM, 38(12):75–84.

Springer, G. and Friedman, D. P. (1989). Scheme and the Art of Programming.
MIT Press.

Tanenbaum, A. S. (1999). Structured Computer Organization. Prentice-Hall, fourth
edition.

Walker, H. and Schneider, G. (1996). A revised model curriculum for a liberal arts
degree in computer science. Communications of the ACM, 39(12):85–95.


