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Abstract

Molecular beam spectroscopy is a branch of experimental quantum mechanics that
analyzes radio-frequency hyperfine spectra of molecules to determine nuclear properties
of atoms. At St. Olaf College, numerous software tools have been developed to analyze
increasingly complex spectra. A new tool, Linefit, has been developed for more efficient
analysis of spectrometer data sets. A brief discussion of the fitting engine, the Nelder-
Mead simplex method, is provided, as well as the current status of development.



Introduction

Over the past three years I have conducted interdisciplinary research in physics and
computer science at St. Olaf College, working with the molecular beam spectroscopy
(Molbeam) research group. I have focused on developing new software tools that will
make the scientific research more productive, including safety and data acquisition
systems. In this paper, I will be detailing my current project for the team, a data analysis
system. A brief discussion of the physics that motivates new tool development is in order
to place the project in perspective.

Research in molecular beam spectroscopy has been an ongoing effort at St. Olaf College
for over twenty years. Our group's work focuses on the acquisition and analysis of high
precision radio-frequency spectra of alkali halide molecules. A sample portion of the RbF
spectrum is illustrated in Figure 1. Each peak seen is the result of a transition between
hyperfine energy levels of the nuclei of diatomic molecules. These spectra can be
accurately predicted by quantum mechanics with knowledge of experimentally-obtained
factors. These factors are known as atomic hyperfine coupling constants, and are a
measure of the geometry of an atomic nucleus.
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Figure 1: RbF Spectral Data

Through analysis of acquired spectra these hyperfine constants can be calculated. Our
research group has written a suite of computer programs over the years to accomplish this
task in a two-step process. The first step is handled by a program called Linefit. It takes
an individual observed transition and a line assignment as input. A line assignment is a
set of quantum numbers that describe the observed transition peaks in the spectrum.
Using this information, a transition frequency and its associated experimental uncertainty
is calculated. The second step is accomplished with a program called Specfit, and
involves combining many individual transition frequencies and their uncertainties to
calculate a set of hyperfine coupling constants that satisfy all of the transitions.

Specfit and Linefit have been implemented in many computer languages and for many
hardware platforms over the years. Periodically they have been extended (or rewritten) to



handle increasingly complex spectra that our group has investigated (Olson et. al., 1994).
The current incarnation of these programs are programmed for use in the MathCad
computer algebra system for use in a Windows environment.

The most time consuming and computationally intensive aspect of our data analysis is in
the Linefit routines. My research has focused on development of a more efficient
implementation of Linefit as a standalone Windows application for use by our research

group.

Linefit Requirements

Linefit is not only a tool to fit data. It is also capable of assisting researchers in making
the line assignments through quantum mechanical simulations. These theoretical
predictions relate to the Stark spectrum and the associated Rabi line shape that
correspond to the assigned transitions. While the theory regarding the Stark spectrum and
the Rabi line shape (Rabi, 1937) is beyond the scope of this paper, it is sufficient to state
that every transition peak's intensity and frequency location is directly proportional to the
frequency and amplitude of a Stark component (“stick™) in our predictions. Due to the
configuration of our experimental apparatus, all transition peaks take the form of the Rabi
line shape, a resonance peak that has an explicit mathematical form. In Figure 2, a
theoretical prediction of the Rabi line shape is drawn in blue and the Stark spectrum is
shown in green on top of the RbF data from Figure 1.
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Figure 2: Theoretical Prediction Overlays

The most important aspect of a Linefit implementation is that it is capable of performing
a nonlinear multidimensional minimization technique efficiently. The goal of this
technique is to determine optimal Rabi function parameter values such that the total



difference between the theoretical prediction values and the experimental data is
minimized. These parameters consist of the frequencies and amplitude of the Stark sticks,
as well as four additional terms relating to the background noise height and overall
efficiency of the experimental acquisition itself.

MathCad Limitations

The choice of minimization technique for our group's MathCad implementation is the
Levenberg-Marquardt method (Weisstein, 2004). This method takes as input an objective
function to minimize, as well as the first derivatives of this function with respect to each
parameter in the objective function.

This derivative requirement is a major drawback for two reasons. First, since every data
set is different, the objective function and all its various derivatives need to be re-coded
on a case-by-case basis. For simple simulations, this is not a difficult task; however, with
newer spectra from °Lil, RbF, RbCl, and RbBr it can take hours — if not days — to set up a
calculation. The fact that the code is largely uncommented only aggravates the situation.
Second, the computation of the fits suffers a performance penalty due to MathCad
overhead, both in program interpretation and symbolic derivative evaluation.

There have been serious stability issues with MathCad as well. The Linefit routines and
the symbolic derivative information required for the Marquardt minimization can cause
the algebra system to crash — even when saving recently entered changes! As this process
of manually computing and entering the objective function derivatives is tedious and
error-prone, stability is of utmost importance.

Finally, the routines have proven to be difficult to extend to handle complex spectra.
Different isotopes of a molecule each produce different transitions at different
frequencies. Oftentimes peaks from multiple isotopes all lie within the same set of data.
Each isotope needs its own objective function, effectively doubling the user set-up and
computational time for the fitting. Support for overlapping spectra is still weak. As such,
the typical approach is to re-acquire data to focus only on one isotope's transition. This
new data acquisition can be in excess of three days.

New Design Goals

In light of the drawbacks of the MathCad implementation, I began work on a replacement
version of Linefit. It is designed to be run in a Windows environment. Data files utilized
in the calculations are compatible between MathCad and Win32 implementations.

In addition to the basic requirement of compatibility with the prior implementation, I also
centered the design around speed, stability, and generality. That is, given the same set of
data and line assignment, the fitting process should be completed in a shorter amount of
time with uncertainty less than or equal to the MathCad implementation. The program



must not crash during normal use.

I intend for the code to be easily extensible. As a result, it is heavily commented, and
extensive documentation has been written regarding internal functions and various
support libraries.

The issue of generality has been my new addition to the Linefit process. The idea is that a
researcher should only need to look at a data set and make a line assignment, foregoing
all the manual drudge work of reprogramming the fitting routines on a case-by-case basis.
It must also be capable of handling overlapping lines to some extent. This flexibility is a
great asset to achieving efficient analysis of thousands of existing data sets!

The generality requirement delegates the generation of the fitting function to the Linefit
program. I also made the design choice to avoid taking derivatives at all costs, for
performance and numerical stability reasons. This restriction means that the Levenberg-
Marquardt minimization technique is not a viable option. Instead, I have chosen to use the
downhill simplex method of Nelder and Mead (1965).

Downhill Simplex Method

The downhill simplex method is a nonlinear multidimensional minimization technique
that stands apart from other such minimization techniques. Its distinction lies in that the
method only requires knowledge of an objective function of N parameters; other
techniques use various derivatives to some extent. This aspect of the downhill simplex
method enables analysis of a dynamically generated objective function that is based on
the number of Stark sticks present in the line assignment.

The method involves the use of a geometric figure called a simplex. In an N-dimensional
space, a simplex is a figure with N+1 vertices. Thus, in two dimensions a simplex is a
triangle, in three it is a tetrahedron, and so on for higher dimensions. Each of the vertices
of the simplex represents a unique set of parameters for the objective function. A simplex
also has the property that if the objective function is evaluated at all vertices of the figure,
one will have a maximum value. Through manipulation of this maximal vertex, the
position of the simplex in its parameter space can be altered to move towards a minimum.

Linefit's implementation of the simplex algorithm is based on the algorithm presented in
Numerical Recipes in C++ (Press, Vetterling, Teukolsky, Flannery, 2002) and consists of
the following steps. First, evaluate the objective function at all vertices of the simplex to
determine the “worst” and “best” points. Next, a reflection test is performed. This means
that the worst point is reflected through the surface defined by the remaining points in the
simplex and the objective function is re-evaluated at that point. If there is a decrease in
objective function value, the test succeeds and the point is extended by a factor of two
along the reflection path and the objective is re-evaluated. Whichever point has the lowest
objective value is retained as the final position for the vertex and the iteration of the
algorithm terminates. In the event of a reflection test failure, a one-dimensional
contraction is performed. This contraction moves the worst point towards the surface of



the other vertices by a factor of one-half. The objective is re-evaluated at the new point. If
there is an improvement, the iteration terminates with the contracted position as the new
vertex location. Otherwise, a full contraction is performed. This causes all vertices other
than the best point to have their distances to the best point reduced by a factor of one-half.
Figure 3 depicts the various steps of the algorithm. Fitting currently terminates after either
5,000 iterations have passed or the fractional change in optimal parameter values is
smaller than a user-specified tolerance factor.
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Figure 3: Simplex Manipulations

Development Challenges and Progress

Throughout the course of development of Linefit there have been various technological
hurdles to be jumped. Some have been mundane issues, such as compiler template
compliance issues, while others have been interesting from a design perspective.

Progress has been slower than initially anticipated, due to the need to develop various
utility libraries. These libraries include a linear algebra package and graphing utilities.
While numerous such libraries already exist (and may even be freely available for use),
one of the goals of my research program is to produce as much original work as possible.
This approach also provides more intimate knowledge of the algebra and graphing
subsystems, providing more locations for optimization in future revisions of the code.

Many of the original MathCad Linefit subroutines were applicable to their Win32
counterparts. Oftentimes these algorithms needed to be analyzed and re-interpreted for
use in C++, as the MathCad programming language is untyped and utilizes other features
of the algebra system, including arrays that are memory-safe and grow automatically.
Translation between the strongly typed C++ and untyped MathCad was a difficult
challenge!

Generalizing the fitting process was an interesting challenge. The problem dealt with
generating a set of parameters to fit for based on the line assignment and letting the
simplex fit routine know of the form of these parameters. Existing MathCad routines
assumed a particular form for the parameter set, which I chose to replicate. I also devised
a scheme that would encode parameter array parsing information in an array that was
passed to functions requiring this information.



I also handled overlapping lines with the Win32 Linefit, through the introduction of what
I call “line sets.” Each line set can be thought of as an independent source of information
in the observed spectrum. Common examples include overlapping lines from different
isotopomers of the molecule or lines showing up from an unexpected vibrational
sequence. All known troublesome data sets can be modeled with two overlapping line
sets. To provide tolerance for the unexpected, the Linefit fitting engine can handle an
arbitrary number of line sets; however, the user interface currently allows up to four as
input. This can be easily extended in the future if circumstances require it. All line set
effects are taken into account when the objective function and its parameters are being
generated for the simplex routines.

The first release candidate of Linefit was completed in mid-January 2004. Current work
focuses on minor bug fixes and documentation (Bongard, 2004), with a 1.0 release
expected by mid-March. Future research includes optimization of the fitting process and
incorporation of new features that have been under simultaneous development for the
MathCad Linefit program.

Progress with Linefit is likely to continue throughout the duration of molecular beam
spectroscopy research at St. Olaf. It is clear that the speed, stability, and generality offered
by the new incarnation of Linefit will be serving the team for years to come.
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