
A Teachers Tool for Detecting Possible Cheating in
C++ Programming Classes

Justin Bearinger
Student

Valley City State University
Justin.Bearinger@vcsu.edu

Abstract:

Teachers have enough to do in order to just keep up with grading without the work of
having to check student programs for cheating. So, I have written a pair of computer
programs that can be used to aid the detection of cheating, if any, in C++ programming
classes.

This paper describes and illustrates the difficulties encountered in trying to produce a set
of distance correlations between computer programs. It states what my programs look for
in determining the distance between two programs being compared. It also describes
how the distances produced should be interpreted and what interpretation should be
placed on the distances. Also provided in the paper are various test results from the
testing process to the final product.

mailto:Justin.Bearinger@vcsu.edu

Introduction

Grading and evaluating programs is one part of a teacher’s duties, another is to determine
if students are copying from other’s programs. It isn’t reasonable to believe that students
will never cheat. Some types of classes are inherently easier to catch cheating than
others. However, it is difficult in programming classes to remember exactly what one
source file looks like from start to finish when grading other programs.

I have created a set of C++ programs that work together to analyze other C/C++
programs for the purpose of attempting to catch cheating in programming classes. The
first of the two programs simply scans the source code files of the programs to be
compared and produces a vector of measures for a set of predetermined soured code
features. The second program takes the vector of measures from the first program and
computes the Euclidean distance between the programs being compared.

In order for the first program to scan the source files and create a set of measures there
were a number of obstacles to overcome. The first and foremost was the parsing of the
source code. Once the problem of parsing was overcome, I then needed to determine
which features of the source code should be scrutinized for comparison. Besides
determining which features to examine I needed to decide whether or not certain features
were more important than others and if or how they should be weighted. Once the first
program was completed, I wrote the program to evaluate the counts produced and give a
set of distances for the programs that were scanned.

Parsing

The most difficult part of the project was parsing the source code. The full front end of a
compiler was more than was needed. However, I had to have some way to break down
the scanned code and create the set of counts for the source code features. So, I decided
to write a function that would take a character string and turn it into individual words and
characters (characters being semi-colons and other forms of punctuation). However,
before calling this function, the string had all comments removed. I used a series of
string position methods to create the individual words and characters. Once a word or
character is extracted from the string it is placed onto a stack that is to be analyzed further
into the function.

Some of the things to be counted are reserved words as well as certain punctuation. In
order to keep track of these, every word and/or character in the source code needs to be
checked. As words and characters are stripped from the string and before they are pushed
onto the stack they are compared to see if they are one of the features to be counted.
Once the initial stack is created and the reserved words that are easy to detect have been
counted, the stack of words and characters is passed further into the function to be parsed
by a series of nested if statements. The nested if statements check the code for things
such as variable declarations, function declarations, assignment statements, etc.

The parsing is enabled by a text file containing all the C++ reserved words. This file also
includes some of the Borland CBuilder system reserved words, since that is the main
system in use on my campus. The file is read and stored into a hash table. The hash table
was created specifically for comparing reserved words and their type. The reserved
words need a type in order to differentiate them during the parsing procedure. I created
three different types and assigned each reserved word one of three types.

The three types are:
 Type 1 reserved words are include the assignable types such as int, double, bool,

etc…
 Type 2 reserved words include the scope block producing types such as if, while,

for, etc...
 Type 0 reserved words include all other reserved words

While the function does find most of the variable declarations as well as the other things
it is scanning for, it does not provide a perfect parse of the source code. A full blown
parser would have been very difficult and time consuming to write and was unnecessary
for this program. The emphasis is not to find out if the source code compiles, which
should be determined by running the program during grading. Instead the main goal of
this program is to accurately and consistently provide a set of measures for comparison
between each program being analyzed. So, a perfect parse is not needed, only one that
will treat every program the same.

Testing Scheme

Once the parsing problem was solved I needed to decide what features were important
enough to record as well as whether or not my parser could handle scanning them. I
came up with various source code features and luckily my parser needed only minor
adjustments in order to check for all of them. After coming up with the set of features to
examine I needed a way to test them.

In order to test the results produced by my programs, I needed an experimental set of
programs. I used a common programming project in which four different C++ classes
participated. Each class was numbered 1-4 for purposes of confidentiality (Hill 2004). I
took the best program from each group as well as one that I wrote myself. Each program
did the same thing, but each was from a different university, so there was little chance for
plagiarizing between them.

I made a copy of each of these five programs, applying cheating tricks such as renaming
variables, cutting and pasting code in different places, renaming functions, changing the
comments, changing the indentation, as well as several other things. Once I created a
copy of each, I then made a copy of each copy employing the same tricks resulting in a
test group of fifteen programs. The goal was to obtain small distances between originals
and copies and large distances for the rest.

I ran my programs on this set of programs several times using different source code
features to process the distance computations. After many test runs on the test group I
came up with a set of features that I felt gave the best distance results. However, the
results produced by these did not seem to be quite as refined as I was hoping for. Upon
further thought I decided it was necessary to apply a weight to the features, so that I could
enforce which source code features were more important than others (the features
measured are discussed in the next section). For example, I completely changed the
indentation in one of the copies and it created a large distance between two programs I
knew should have a close correlation. So, I decided to multiply the final indentation
count by 0.1 since that count produced large values. However, I still feel that indentation
should be part of the overall evaluation.

Finally, I came up with a set of thirteen features some of which are more important than
others for determining the distances between programs. Although some features are not
as differentiating as others I still consider them important enough to be measured. The
following table illustrates the results of the final thirteen features.

Table 1: Test Group Final Results

LC #3 & LC #2 have the distance 0 a9 #3 & a9 #1 have the distance 22.02

LC #3 & LC #1 have the distance 1 a9 #2 & a9 #1 have the distance 22.03

LC #2 & LC #1 have the distance 1 AJ #2 & AJ #1 have the distance 30.03

a9 #3 & a9 #2 have the distance 2.1 AJ #3 & AJ #1 have the distance 37.14

JW #3 & JW #2 have the distance 4 PG #3 & PG #1 have the distance 59.8

PG #3 & PG #2 have the distance 12.19 PG #2 & PG #1 have the distance 71.93

JW #2 & JW #1 have the distance 12.69 PG #2 & JW #1 have the distance 860.63

AJ #3 & AJ #2 have the distance 15.4 PG #2 & JW #2 have the distance 861.32

JW #3 & JW #1 have the distance 16.52 PG #2 & JW #3 have the distance 861.4

Table 1 shows the results of the final source code features on the test group I created.
Each programs’ copies had variances in the way they were created in order to provide a
wider range of difficulties for my programs to overcome. The results show the sudden
jump from a distance of 71.93 to 860.63. All the results are displayed in ascending order.
The jump from 71.93 to 860.63 implies that all previous programs are suspiciously closer
than the rest. The last result of the group (not shown) is LC #1 & a9 #1 have the
distance 16447.2 which shows just how much difference there can be between this
particular set of programs.

Source Code Features Measured

The first part of the thirteen features consists of counts of C++ reserved words. The other
part of this set is specific to the code usage such as declarations and assignments.

The Thirteen Features are:
1) A count of every time the reserved word int is used
2) A count of every time the reserved word double is used
3) A count of every time the reserved word bool is used
4) A count of every time the reserved word while is used
5) A count of every time the reserved word for is used
6) A count of every time the reserved word if is used
7) A combined count of all other reserved words used
8) A count of semi-colons, gives an idea of how many executable statements
9) A count of assignment statements
10) A count of variable declarations
11) A count of the total amount of comments
12) A count of the various compound statements within the entire source code file
13) A count of the total indentation throughout the source file

The counts are stored inside a vector that is subscripted using an enumeration. As stated
previously, the goal is not perfect counts but rather consistent counts. Every program’s
counts are produced in exactly the same way. Once all the source code files for a
program have been scanned and the counts have been generated weights are applied and
appended to a text file. Once the information for a program has been written to a file the
next program for comparison can be scanned and evaluated. The table below shows the
method used for applying the weights.

Table 2: Weight Applying and Enumeration

enum
{Int,Dubl,Bool,While,For,Rest,Semi,Assignmnt,Decl,Comment,Blocks,Indent,If};

 vec_counts[While] = vec_counts[While] * 5;
 vec_counts[For] = vec_counts[For] * 5;
 vec_counts[If] = vec_counts[If] * 5;
 vec_counts[Indent] = vec_counts[Indent] * 0.1;

The table shows two pieces of code directly out of my program. The top line shows the
enumeration I created of the thirteen features. Instead of trying to remember which
number I used as a subscript inside the vector (vec_counts) for each source code feature, I
can simply refer to them by name. I decided that the for, while, and if features were
more important than the others and the indentation feature should have less importance
than the others.

Directory Processing

Once I had finished my programs I needed a fast and easy way to read in multiple
programs for comparison, a single program can have several source code files in it and
there can be many student programs in a single class. Therefore, executing the program
manually for many programs is undesirable. In order to achieve the goal of analyzing
several programs fairly effortlessly, I needed a way to process an entire directory of
folders each containing a program. Fortunately I was able to acquire a substantial
donation in this particular matter. My advisor, Curt Hill, had already written a directory
processing program for his own purposes. Professor Hill allowed me to take a copy of
his directory processing program and manipulate it to work with my program. After the
initial manipulation of the directory program was done, I cut and pasted the code from
my program into the appropriate parts of the directory program.

Once my code had been embedded into the directory program, I was able to process an
entire class of student programs very quickly and with little effort. In order for the newly
modified directory program to work, a grader simply creates a directory tree. The
directory tree for this is created by starting with an initial folder which in itself contains a
folder for each student which should be named appropriately. The name of the directory
should indicate the student. Inside each student directory should contain all the files a
student turns in for a particular programming assignment.

After a directory has been created, the executable file for the directory program can be
started. Once the executable has started, simply open the directory to start in and it scans
every subfolder looking only for the source code files and then creates the source code
feature counts for each program. Once the executable is done running a file named
Cheat_counts.txt containing all the counts can be found on the C: drive.

Distance Calculations

Once the Cheat_counts.txt file has been created it is time for the second program to
calculate the distances between all of the programs. The Cheat_counts.txt file is simply
the text representation of several vectors containing the various counts obtained by the
directory scanning program. A vector of counts is created for each student program and
is represented on its own line in the Cheat_counts.txt file. The distance calculating
program reads the text file in and puts each of the vectors into another vector creating a
two dimensional vector.

Once the two dimensional vector is complete the program can calculate the Euclidean
distances between any two programs. Every student program is represented by a vector
or “point” inside the containing two dimensional vector. Each student program vector is
subtracted from another student’s vector. Then each difference inside the vector is
squared and all the squares are added. Finally, the distance program takes the square root
of the sum of all the squares to determine a distance between the two vectors containing
each students set of counts.

There is no set distance that can be declared as an indication of cheating. This is because
there are too many variances between program assignments. The major variance is the
size of the programs being compared. Very large programs with many lines of code will
inherently have greater distance results than shorter simpler programs. The idea behind
my distance evaluation programs is to show the distance between all the programs
scanned. If there are programs that have a much shorter distance correlation than the rest
of the programs then it is safe to assume that those programs should be reviewed more
closely. However, it does not imply that the programs are examples of plagiarizing, it
just shows that they are abnormally closer than the rest. The following table shows an
example of distance correlations from university #4 (VCSU) for the common
programming project.

Table3: Results from University #4’s
Programming Class.

Program 7 & Program 3 have the distance 7.3
Program 6 & Program 5 have the distance 20.84
Program 6 & Program 1 have the distance 408.32
Program 5 & Program 1 have the distance 408.69
Program 6 & Program 2 have the distance 410.23
Program 5 & Program 2 have the distance 411.9
Program 4 & Program 1 have the distance 605.89
Program 2 & Program 1 have the distance 816.94
Program 8 & Program 7 have the distance 852.88

Table 3 illustrates two sets of programs that have an abnormally close distance when
compared to the rest. All distances are displayed in ascending order by the program. The
abnormality of the first two sets of distances and the third closest distance of 408.32
suggest that the first two sets are cheats. After manual inspection the first two sets did
appear to be cheats. In fact, one of the authors for the second pair, with the distance of
20.84, had been suspected of plagiarism on other assignments by the class instructor.

The following table shows an example of distance correlations that are not as obvious as
the results in table 3.

Table 4: Results from University #3’s
Programming Class.

Prgrm 37 & Prgrm 23 have the distance 0
Prgrm 40 & Prgrm 28 have the distance 1.35
Prgrm 8 & Prgrm 19 have the distance 6.5
Prgrm 45 & Prgrm 37 have the distance 7
Prgrm 45 & Prgrm 23 have the distance 7
Prgrm 38 & Prgrm 26 have the distance 26.51
Prgrm 35 & Prgrm 18 have the distance 29.53
Prgrm 14 & Prgrm 11 have the distance 29.94
Prgrm 32 & Prgrm 9 have the distance 31.76
Prgrm 33 & Prgrm 12 have the distance 38.45
Prgrm 46 & Prgrm 25 have the distance 44.89
Prgrm 35 & Prgrm 20 have the distance 44.93
Prgrm 21 & Prgrm 11 have the distance 48.07

Table 4 illustrates the difficulty in deciphering distance correlations within program
variations. The initial jump isn’t as obvious as table 3. However, the jump from 7 to
26.51 is slightly more intriguing than the other distance differences. The initial jump
seems to be less gradual than others, implying only that the first five pairs should
definitely be looked at closer and maybe a couple of the others. The rest of the distance
results (most not shown) gradually become larger at the same rate as the ones shown.
Upon closer manual inspection the first pair proved to be identical programs, even the
comments were the same. The next four pairs only had differences involving
commenting. The rest of the programs, under close manual inspection, appeared to be
legitimate, original programs. The close correlations of all the programs come from the
class using a specific set of functions and layout.

Once in a while two programs can have source code feature counts that are similar
enough to create a close distance correlation and yet not be cheat programs. The
following two tables show examples of how occasional results can be misleading.

Table 5: Results from University #2’s
Programming Class.

SM & JA have the distance 6.48
MD & HF have the distance 13.96
CG & BC have the distance 20.3
RM & BC have the distance 200.5
TP & BI have the distance 200.91
RM & CG have the distance 204.15

Table 5 shows three sets of programs that have an abnormally closer distance than the
rest. However, after manually inspecting the programs in table 5 only the first two sets
appeared to be cheats. The third set, with a distance of 20.3, was difficult to decipher
manually because the two programs seemed to follow a similar but not identical style part
way through. However, one of the programs was incomplete and the code for it seemed
to end prematurely, leading to the conclusion that they are not examples of plagiarism.

Table 6: Results from University #1’s
Programming Class.

a15 & a12 have the distance 1
a14 & a11 have the distance 13.3
a6 & a10 have the distance 17.8
a8 & a2 have the distance 25.2
a7 & a10 have the distance 256.55
a7 & a6 have the distance 256.58
a13 & a11 have the distance 515.73

Table 6 shows an abnormality between four sets of programs. After closer manual
inspection the first three sets of programs did appear to be examples of plagiarism.
However, the fourth distance of 25.2 under manual inspection showed that the two
programs seemed to be legitimate non cheating programs. After inspecting the counts for
programs a8 and a2 the reserved word counts for the programs were very close.
Normally the counts for reserved words between non cheating programs are quite
different due to the way that particular count is produced. Two programs with minimal
usage of reserved words could produce a misleading distance correlation.

The following figures display the cheating information from all the programs scanned.

Figure 1: Cheat Counts

3 2 5 2

28

13

47

9

0

10

20

30

40

50

University #1 University #2 University #3 University #4

N
um

be
r o

f P
ro

gr
am

s

Cheats Total Programs

Figure 1 illustrates the total number of programs for each university class and how many
cheats were found in each class.

Figure 2: Total Programs Cheat Ratio

12
12%

85
88%

Cheats
Non Cheats

Figure 2 illustrates the total number of cheats and non cheats for all four universities (Hill
2004).

Conclusion

While cheating in programming classes remains difficult to catch I believe that my
programs can be used to remove some of the time consuming, manual analyzing out of
the process. Though my programs are not designed to absolutely pinpoint cheating it
does give an excellent idea of where particular attention should be placed. My programs
were written to evaluate C/C++ programs, Borland programs in particular. Borland
source code files have the extension .cpp which is what the directory program looks for.
However, the only things that would need to be changed are the search for another source
code extension (instead of .cpp) and a few minor changes to the reserved words text file
used.

Given the similarities between C/C++ source code and Java source code it is conceivable
that my programs could also be converted to perform their tasks on Java programs. The
simple syntax that my parsing function checks for in C/C++ code is nearly identical to
that of Java code. Again I conclude that the only things that would need to be changed
are the source code extension search and the reserved words text file.

Acknowledgements

I would like to acknowledge the assistance of Curt Hill in the creation of the finer details
within the distance generating program as well as the contribution of his directory
processing program.

References

Hill, Curt, Brian Slator, and Lisa Daniels (2004). Using and Validating Programming
Land. Submitted for publication at Computers and Advanced Technology in
Education. (CATE 04). www.iasted.org/conferences/2004/hawaii/cate.htm.

http://www.iasted.org/conferences/2004/hawaii/cate.htm

