A Case Study on Refactoring

Chris Andringa
Department of Computer Science
University Wisconsin — Eau Claire

andrincc@uwec.edu

Steven Ratering
Department of Computer Science
University Wisconsin — Eau Claire

raterisj@uwec.edu

Abstract

This project began with the implementation of the game of Risk in the computer
language Java. Risk is a game where up to six players try to take over a simulated world
using one’s armies. Either a person or the computer can control each of the players. The
computer-controlled players would then use one of several strategies. One objective of
this project is to refactor the original implementation of Risk using two object-oriented
design patterns. The Model-View-Controller pattern will be used to separate three
closely related parts of the program: the model of the simulated world, the graphical
view the user sees, and the handling of user inputs to control the game. The Strategy
pattern will be used to encapsulate different strategies for the computer-controlled
players. Finally, we want to find and apply other refactoring patterns.

Introduction

This project came about as a means to challenge us. Unsatisfied with Hasbro’s
computer implementation of Risk, and looking for a significant Java project, we designed
and implemented the game of Risk in the Java programming language. Risk is a game
where two to six players are in control of various countries and are given a specific
number of soldiers to place in their countries. These soldiers are then used to both defend
their countries and attack other players’ countries. The outcomes of these battles are
decided by rolling dice. One or both opponents lose soldiers in each battle. The player
who controls all the countries on the board in the end is declared the winner. Our
implementation allows each player in the game to be controlled by either a person or the
computer. When the computer controls an army, the army is given some measure of
artificial intelligence in the form of a strategy.

A Java program is composed of a collection of classes and one of the classes in
our first implementation handled too much. It represented the model of the Risk world,
the view the user sees, and the handling of mouse clicks and keystrokes which control the
play of the game. This class also has a spot to plug in one of three different artificially
intelligent strategies.

As object-oriented programming has become more popular, a number of design
patterns have emerged. Each design pattern is a template that can be used to solve a class
of commonly occurring problems. One of these design patterns, the Model-View-
Controller Pattern, is perfectly suited for the large class in Risk mentioned above. We
have split this class into three interacting classes: one to handle the model of the world,
one to handle how the world is graphically displayed, and one to handle the user’s inputs
of mouse clicks and keystrokes. The new program runs just as the original, but the code
is more modular and thus easier to modify.

Our current task is to repackage the strategies for the computer-controlled armies
using another design pattern, the strategy pattern. In the current Risk implementation, the
user can choose if an army is controlled by the computer or the user. An enhancement
would be to let the user choose different strategies for computer-controlled armies.

This project is a case study in refactoring legacy code using design patterns. Most
software development efforts in industry deal with legacy code. Design patterns enable
software developers to use successful designs and architectures to make their code more
flexible, elegant, and reusable.

The Transformation of Risk

Our original implementation of Risk was very simple in its form. Most of the program
was contained in only one file. The new, refactored version follows the Object Oriented
Programming (OOP) style program more closely than the original. Using Fowler’s
refactoring book [2] and the Gang of Four’s design pattern book [1]; we were able to plan

the refactoring. Using the Model-View-Controller (MVC) design pattern, we divided the
large class into three distinct classes. Having three classes for these three components
makes modifying or replacing one of these components much easier. After we achieved
this first goal, we started adding other design patterns, such as the Strategy and Factory
patterns to clean up the implementation further.

The Model-View-Controller Design Pattern

The Model-View-Controller design pattern was first conceived and documented
in 1978 and was first used primarily in the programming language Smalltalk 80. Since
then many programs have used this pattern but many programmers probably do not even
realize they are using it. The basis behind the design is that there are three distinct parts
of a program: the internal data (the Model), its presentation (the View), and the means to
update the model (the Controller). These three parts work together to run one program.
One would think that this means having three classes to house these parts, but Martin
Fowler discusses using only two classes. Fowler says, “The gold at the heart of MVC is
the separation between the user interface (the view) and the domain logic (the model)”
[2]. This means that there are only two parts, as the view and the controller are combined
into one part. This is how the original Smalltalk 80 utilized MVC and refactoring in this
way is best accomplished in small steps. The class was first divided into 2 parts since it
will then be easier to remove the controller from the view, making this a 3-tier system.

Model-View-Controller 2 Tier Design Pattern (MVC)

4. View updates
using new hModel
data

1. Action takes
place in View

L Model ’ { View and Controller J

3. Model runs
command and
verifies changes to
Wigw

2. Controller
interprets and send
command to Model

Figure 1: 2-Tier MVC Design Pattern

The 2-tier design of MVC (Fig. 1) combines the controller and view into one file,
while the data and model is contained within another file. As a 2-tier system, the client
inputs an action into the view via mouse or keyboard and then the controller will interpret
this action. After the action has been analyzed, the appropriate command is sent to the
model. To accomplish this, the view has a reference to the model. When the model gets
the command, it will execute the command, update its data accordingly, and notify the
view of the changes. To accomplish this, the model has a reference to the view. Finally,

the view/controller will update its information to show the changes. After this 2-tier
system was developed, we evolved it into a 3-tier system. The only benefit to using a 2-
tier to the 3-tier is that if you were teaching someone to use MVC, then the 2-tier would
be more easily derived.

Model-View-Controller 3 Tier Design Pattern {(MVC)

Model J—

31 Motifies
Wiew

2} Interpret View
action and send
command to Model

(Controller Wi

1) Action takes place on View
and is sent to Controller

41 Retrieves
new data

Figure 2: 3-Tier MVC Design Pattern

This 3-tier system (Fig. 2) follows the same path as the 2-tier but removes the
controller from the view and makes it a new class. This allows the software developer to
change either the controller or the view without the changing the other. This is the major
benefit of using a 3-tier system instead of a 2-tier. It is in this 3-tier design that we are
able to incorporate the Strategy and Factory design patterns into the Risk program
without having to change the view or controller.

The Strategy Design Pattern

Strategy Design Pattem

Specific Strateqy
‘Generic Attack Strategy bﬁ
Specific Strategy
*User can pick attack strategy
or make news strategy as long
odel as the generic strategy is its
super class.
) 1
Controller Wiew J’

Figure 3: Strategy Design Pattern

The Strategy design pattern (Fig.3) is our way of changing the various attack
patterns and decisions made by a computer player. We wanted a way for the software
developer to be able to add new attack strategies to the game without having to rewrite a
whole body of code in the model and this pattern gave us the idea to do so. By making
the attacks used by the model a series of parent class commands--we can make a series of
children classes to work under this parent. This is called inheritance and now a software
developer can make as many children strategies as desired and only needs to change one
line of code to test his or her strategy. As long these children classes contain the parent
strategy methods then the game will run under these new strategies. This new strategy
class would then control how the computer attacks and how the computer will adjust its
armies in the various countries. The software developer can program famous army
strategies of the past or come up with some of his or her own. This design pattern does
not replace the original model class but rather enhances it by having the model call the
strategy in a method call. After this project, we hope to expand more on these various
strategies and add more artificial intelligence to the game.

The Factory Design Pattern

Factory Design Pattern

hodel

*The Controlleris
replaced with a

Command Factory ;
that will interpret a Controller Views
View command into a

sut class of a super
class

| Spedfic Command

!

Specific Command

Command Factory

Genstic Command

Figure 4: Factory Design Pattern

The Factory design pattern (Fig. 4) is one of the reasons that a 3-tier MVC design
pattern is better than a 2-tier because we can more easily interchange the original
controller with a new one. This design pattern consists of a factory class, a parent
command class, and several children command classes. This begins by an action taking
place in the view. The factory receives this action and compares it with the factory’s
own list of actions. If the action matches one of these commands then it “manufactures”
a new instance of this command and the model runs the command. This pattern allows
the software developer to make new actions in the view and all that needs to be changed
is to make a new children command class. The developer would also have to update the
list the factory uses to reflect this new action. The pattern also allows an author to debug
the Risk program easier because if an action fails, then a default failure command can be
created to notify the author without crashing the computer.

Use of Polymorphism and Inheritance

Idea behind Polymorphism and Inheritance for Risk

1 Human State Sub Class|

|

Inheriiance
BEFORE AFTER
2 Human State Sub Class

|

[9 Human State Constants]—-[1 Human State Class J .

8 Human State Sub Class

|

Inhertance

9 Human State Sub Clasg

|

Figure 5: Polymorphism/Inheritance

Lastly, the use of polymorphism and inheritance was a large part of our
refactoring. The original Risk used a variable called Human State to determine certain
actions in the controller, but the controller did so in a series of if-then-else statements.
This cluttered the code and made it hard to read. Using polymorphism cleaned up the
code and made refactoring it easier. By making a generic Human State and a variety of
children classes that “inherit” abilities from their parent class, we can move the code
from the if branches into their respective child classes (Fig.5). This helps to remove
repeated code and allows the software developer to simply add more HumanStates as
desired. Polymorphism was also used by our Factory design pattern and our Strategy
design pattern, which shows that polymorphism and inheritance play a large part in
refactoring.

Conclusion and Further Work

Many conclusions can be drawn from our refactoring of Risk. This project was a
chance to challenge us, but what if this project was given to a group of college students?
A lot of work in industry is legacy code and students with experience working with
legacy code will be more prepared when they become employees. This Risk program
could be a way of training college students how to refactor code earlier in their careers,
and then they would be more effective in the work force later. Second, we find that on
average our files and their contents are smaller and more organized then those of the
original program. By using these design patterns, we were able to make it easier for
someone later to come along and possibly refactor our code farther. Finally, we find that
there must be a logical end to how far one can refactor. A program can always be done
more effectively, but through time constraints it may not be profitable for a company to
continue refactoring a program. This is the case with Risk as we begin a new project to

include more Al into the program to further the intelligence of the computer-controlled
players. One could include a backtracking algorithm to guess the best possible move or
another algorithm that could be faster, the possibilities are endless. Through this process,
new design patterns may be formed from the combining of old ones in projects such as
this. A new design pattern may come from our installing Al into the program. Another
area for further work is to make the program a web application.

References

1. Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides, John. (1995). Design
Patterns: Elements of Reusable Object-Oriented Software. Reading,
Massachusetts: Addison-Wesley.

2. Fowler, Martin. (1999). Refactoring: Improving the Design of Existing Code.
Reading, Massachusetts: Addison-Wesley.

