
A Bound on Matrix-Vector Products for
(0, 1)-Matrices via Gray Codes

Andrew A. Anda
Department of Computer Science

St. Cloud State University
aanda@eeyore.stcloudstate.edu

Abstract

We demonstrate a differencing method for reducing the number of arith-
metic operations within a (0, 1)-matrix vector product. We use that
method to more efficiently perform Gray code matrix vector products.
Using one or more Gray code matrix vector products, we show how to
reduce the number of arithmetic operations for a general (0, 1)-matrix
vector product. Finally, we show how (0, 1)-matrix vector products
may be applied to the performance of certain restricted classes of more
general matrix vector products.

Introduction

A (0, 1)-matrix (also identified as zero-one or Boolean) is a rectangular matrix
for which each element of the matrix has the value of either one or zero.

(0, 1)-matrices arise from problems in a variety of application areas. Prominent
examples include:

• adjacency matrices for simple graphs, representing the connectivity relation-
ships between vertices; (Rosen, Michaels, Gross, Grossman, & Shier, 2000)

• term-by-document matrices generated by binary vector space model based
computational information retrieval (BVIR) algorithms and applications such as
search engines; an element wij in a weight matrix W ∈ {0, 1}n×m is set to 1 if a
term tj appears in document Di, with 0 otherwise; (Dominich, 2001)

• matrix calculus applications in statistics and econometrics which generate
special (0,1)-matrices such as selection, permutation, commutation, elimination, du-
plication, and shifting matrices; (TURKINGTON, 2002)

In fact, any general matrix may be decomposed into the linear combination of



BOUND ON (0, 1)-MAT.-VEC PRODS. VIA GRAY CODES 2

conformal (0,1)-matrices. For a general real matrix A ∈ Rm×n,

A =
m∑

i=1

n∑
j=1

αijEij,
{
Eij = eie

T
j , 1 ≤ i ≤ m; 1 ≤ j ≤ m

}
(1)

The matrix-vector product operation,

Ax = y, (2)

represents the product of a matrix, A ∈ {0, 1}m×n, by the vector, x ∈ Rn, to yield
the vector, y ∈ Rm. More generally, the vectors may actually be over any algebraic
ring for which addition and multiplication is closed and well defined.

The general matrix-vector product is an example of level 2 operation, and as
such, it exhibits a quadratic complexity. (A doubly nested loop is required for its
evaluation). There is little that can be done to improve the efficiency of the general
matrix-vector product. The operations may be blocked for modest performance gains
for large matrices on a hierarchical memory architecture. But, we know of no way
to reduce the number of scalar additions and multiplications. For certain classes of
structured matrices, however, we can attain O(n ln n) by applying the FFT to the
calculation. A structured matrix is one which can be fully characterized by O(n)
parameters. In fact the product of a rank one matrix and a vector can be performed
in O(n) if we know the two vectors that formed the rank-one matrix, Ax = yzT x for
some vectors y and z. We will be considering general (0, 1)-matrices though.

A Gray code is a circular ordering of all 2n binary strings of length n in which
adjacent strings differ in exactly one bit, i.e. all adjacent strings have a Hamming
distance of unity. One can label the vertices of a hypercube with bitstrings such that
all adjacent neighbors have a bitstring differing in exactly one bit. Each Gray code
corresponds to a Hamiltonian cycle about the vertices of the hypercube.

A Differencing Method

The general Matrix-vector product Ax = y, A ∈ Rm×n, x ∈ Rn, and y ∈ Rm, is
computed with the following equation,

yi =
n∑

j=1

αijxj, 1 ≤ i ≤ m. (3)

Computing this requires an algorithm having a doubly nested loop, with two
possible orderings. We’ll consider the ordering which performs an inner product in the
inner loop, so that each outer loop completely calculates one element of the resultant
vector y. With either ordering, the number of additions and multiplications each
is mn. For a (0, 1)-matrix though, αij ∈ {0, 1},∀i, j. So, either the product αijxj

contributes to the sum as xj, in the case of αij = 1 , or it is skipped, in the case of



BOUND ON (0, 1)-MAT.-VEC PRODS. VIA GRAY CODES 3

αij = 0. This implies that the maximum possible amount of work is mn additions
which would occur if the matrix were all ones.

Now, lets consider computing the difference between two elements of y, yi and
yk:

yk − yi =
n∑

j=1

αkjxj −
n∑

j=1

αijxj (4)

=
n∑

j=1

(αkjxj − αijxj) (5)

=
n∑

j=1

xj (αkj − αij) (6)

Now lets consider computing yk if yi has already been computed.

yk = yi +
n∑

j=1

xj (αkj − αij) (7)

= yi +
n∑

j=1

xj (dj) , dj = αkj − αij (8)

This implies that apart from the first element of y to be computed, each sub-
sequent element of y can be computed as the sum of a previously computed element
with the inner product of x with the difference vector of the two rows of A, d. Let Ak

be the kth row of A. Then we have saved ‖Ak‖1 − ‖d‖1 − 1 operations in computing
yk. If ‖d‖1 + 1 < ‖Ak‖1, the savings is positive. (the offset of 1 is due to the addition
of yi) ‖d‖1 is also the Hamming distance between two rows of A.

We can deal with any duplicated rows in A by loading its previously computed
value at the expense of no additions.

If the remaining rows are unique, what’s the lowest number of additions that
we need? Because there are no duplicated rows, there must be a Hamming distance
of at least one between each row of A and each other row. The optimum in this case
would be for there to be, for every row of A, some other row of A of unit Hamming
distance. We have already defined a sequence of Boolean vectors which satisfies this
condition, a Gray code.

A Gray code q bits wide consists of a sequence of r = 2q bitstrings. Using the
differencing method above, a r×q Gray code matrix vector product can be computed
in a maximum of r additions. If one substitutes a load for an addition when there are
at most 1 nonzero bits in the row, the maximum becomes r−q−1 required additions.

If we have a general (0, 1)-matrix matrix having q columns and any number of
rows, we can first precompute a scratch y using the Gray code Matrix vector product
with x. Then, for each row of the general matrix A, we load into y the entry in the



BOUND ON (0, 1)-MAT.-VEC PRODS. VIA GRAY CODES 4

scratch y corresponding to the bitpattern for that row. The only additions are from
the precomputation of the scratch y from the Gray code matrix. If m > r, we have
a greater reduction in the maximum number of additions for the Gray code matrix
itself.

If n > q, one of two conditions can hold:
• n mod q = 0 in which case we will use n/q Gray code matrix stripes across A

with a subsequent sum across the stripes for all m.
• n mod q 6= 0 in which case we will use bn/qc Gray code matrix stripes of width

q, and one additional Gray code matrix stripe of width n mod q with a subsequent
sum across the stripes for all m.
Let us define w(q, m, n) as the number of additions required for a general (0, 1)-matrix.
Then for an arbitrary m and n, ignoring the q + 1 savings from above,

w(q, m, n) =





2n if n < q
2q if n = q
n
q
(2q + m)−m if n > q and 0 = n mod q

bn
q
c2q + 2n mod q + m

(
dn

q
e − 1

)
if n > q and 0 6= n mod q

(9)

The minimizing value of q may be determined informally by selecting the small-
est w for a reasonably small set of q’s clustered around lg m. More formally, we can
evaluate ∂w

∂q
and find where it has the value of zero. So, using Maple on the expression

corresponding to the third condition,

∂w

∂q
=

n2q ln 2

q
− n(2q + m)

q2
(10)

We find 0 = ∂w
∂q

at

q =
LambertW (me−1) + 1

ln 2
, where LambertW (x)eLambertW (x) = x (11)

Exploiting the (0, 1)-Matrix Vector Product

Equation 1 has little practical value unless one considers the special case where
the number of distinct αij terms is smaller than the smallest of the two indices. Then
all of the Eij matrices will be added together forming denser (0, 1)-matrices for each
set of identical αij terms. We can then refactor equation 1 as:

A =
k∑

i=1

βiBi, (12)

Where there are k distinct entries, βi in A and each Bi represents a distinct (0, 1)-
matrix.



BOUND ON (0, 1)-MAT.-VEC PRODS. VIA GRAY CODES 5

For a single β, the matrix vector product can be written as:

Ax = y = βBx = B(βx), (13)

In equation 13, we see the scalar product moved from being O(mn) to O(n). Equa-
tions 12 and 13 can be combined:

Ax = y =

(
k∑

i=1

βiBi

)
x =

k∑
i=1

Bi(βix). (14)

Lets consider the case where k = 2. The elements of the matrix A are either
of only two values, αij ∈ {β1, β2}. The cardinality of the set that αij is drawn from
is the same as that of the (0, 1)-matrix. So, rather than use a pair of (0, 1)-matrices
as shown in equation 14, we can use a single one if we first affinely transform the
equation with an appropriate scaling and translation. The elements of A can be
scaled simply by multiplying by a scaling factor: γA. Scaling equation 2 we get:

γAx = γy. (15)

However to translate the values of A, we need to create a conformal translation
matrix, T = {1}m×n, which will serve as a basis for the uniform translation of all the
entries of A. A unit translation of A towards +∞ is represented by the sum A + T .
Translating equation 2 we get:

(A + T )x = Ax + Tx = y(A) + y(T ), where y
(T )
j =

n∑
i=1

xi (16)

We can translate the entries of A an arbitrary distance δ. We then augment equa-
tion 16:

(A + δT )x = Ax + δTx = y(A) + δy(T ), (17)

We can now combine equations 15 and 16 to represent the full affine transformation:

γ(A + δT )x = γ(Ax + δTx) = γy(A) + γδy(T ) = γ(y(A) + δy(T ))). (18)

Equation 18 can be used to transform any two-valued matrix vector product into
a (0, 1)-matrix based vector product. For example, a common two valued A is
{−1, 1}m×n. This can be transformed into a (0, 1)-matrix based vector product by
setting γ = 2 and δ = −1

2
:

{−1, 1}m×nx = γ
({0, 1}m×n + δ{1}m×n

)
x (19)

= γ(A + δT )x (20)

= γ(Ax + δTx) (21)

= γ(y(A) + δy(T ))) (22)

= 2(y(A) − 1

2
y(T ))) (23)

= 2y(A) − y(T ))). (24)



BOUND ON (0, 1)-MAT.-VEC PRODS. VIA GRAY CODES 6

Conclusion

We were able to demonstrate a differencing method for reducing the number
of arithmetic operations within a (0, 1)-matrix vector product. We then used that
method to more efficiently perform Gray code matrix vector products. Then using one
or more Gray code matrix vector products, we showed how to reduce the number of
arithmetic operations for a general (0, 1)-matrix vector product. We then showed how
(0, 1)-matrix vector products may be applied to the performance of certain restricted
classes of more general matrix vector products.

References

Dominich, S. (2001). Mathematical foundations of information retrieval. Dordrecht, The
Netherlands: Kluwer.

Rosen, K. H., Michaels, J. G., Gross, J. L., Grossman, J. W., & Shier, D. R. (Eds.). (2000).
Handbook of discrete and combinatorial mathematics. Boca Raton FL: crc.

TURKINGTON, D. A. (2002). Matrix calculus and zero-one matrices. New York: Cam-
bridge University Press. (Statistical and econometric applications)


