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Abstract

We describe using the calculation of harmonic sums to introduce and
integrate the discussion and exploration of some elementary principles
of finite precision floating point computation into a CS1 course. After
students’ exposure to this problem and its solutions, they should not
only have a better understanding of when to exploit event-controlled
vs. counter-controlled loops, but also be able to correctly answer the
following two questions relating to operations on floating point data:
1. can (A + B) + C 6= A + (B + C) for some floating point A,B,C?
2. can (A + B) = A, where |B| > 0 for some floating point A,B?

Introduction

Numerical computation consists essentially of the study, and implementation in
software on some architecture, of those algorithms which compute via finite precision
(usually floating point) arithmetic. However, there has been a progressive process
of reduction in numerical computation content in the sequence of ACM Computing
Curricula recommendations. In fact, the current 2001 Report (The Joint Task Force
on Computing Curricula – IEEE Computer Society, ACM, 1991) has eliminated from
the core curriculum all seven lecture hours of numerical and symbolic computation
recommended by the 1991 Report (Tucker, A.B., et al, 1991). An understanding of
at least a few basic principles of numerical computation is essential for anyone who
performs arithmetic operations on floating point data.

Floating point computation is pervasive and unavoidable in such diverse disci-
plines, and applications to disciplines, as economics and finance, accounting, applied
mathematics, applied statistics, and just about all of the engineering and science
(hard and soft) disciplines. While unnecessary degrees of inaccuracy and inefficiency
are common (e.g. statistics, computational geometry, and modeling of continuous
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systems in general), there are several well known anecdotes and examples of catas-
trophic failure attributed to floating point computation related factors: e.g. the
Patriot missile failures, and the Arian rocket failure. (Over:01, 2001).

The undergraduate computer science major or minor should certainly expect to
have some exposure to the theory and practice of computing with floating point data,
but often this takes place only in hardware or architecture related coursework where
the connection to the behavior of implemented algorithms may not be emphasized.
However, many of the students in a CS1 course are majors in other disciplines, the
majority of which are quantitative. For these students, CS1 may their only formal
exposure to computing theory and practice, yet they will be expected to perform
floating point computation as part of their further studies in their discipline and/or
the practice of their profession.

The CS1 curriculum is usually fairly well defined at each educational institu-
tion where it is taught. The current ACM Computing Curricula report (The Joint
Task Force on Computing Curricula – IEEE Computer Society, ACM, 1991) specifies
several of the more popular implementation strategies: imperative, objects, func-
tional, breadth, algorithms, and hardware first. Most include programming, and
more specifically, loop control constructs. It is those CS1 courses that I will be ad-
dressing. Because there is often little latitude for modifying the curricular content
of these well defined courses (as well, if one adds some new content to the course
it is usually necessary to determine and excise some other content), The only prac-
tical option is to sneak in new content by overloading some aspect of the existing
content. This paper describes the overloading numerical content onto the practice of
loop control.

Problem for Student to Solve

A harmonic series is the sum of a sequence of terms, where the terms are the
reciprocals of all of the set of positive integers:

Hn = 1 + 1/2 + 1/3 + . . . + 1/n =
n∑

k=1

1/k, n ≥ 0. (1)

Hn for any given finite n is also labeled a Harmonic number.
In mathematical theory, using infinite precision arithmetic:
1. the infinite sum of a harmonic series is infinite;
2. it grows as slowly as a log function;
3. the order in which the terms are summed is irrelevant (the associative law).
However, in computing practice, using finite precision arithmetic, the order in

which the terms are summed affects the accuracy as well as, for some orderings, the
number of terms which may be effectively summed. The greater the difference in
magnitude between the two operands of a floating point sum, the more information,
or significance, is lost from the smaller when added to the larger in the process of
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aligning the decimal point. This is one example of a roundoff error. Most of the
significance of a small number is lost when it is added to a large number. When
the ratio of the larger number to the smaller number becomes sufficiently large, the
value of the sum will be identical to the value of the larger number. However, we can
reduce or limit this kind of roundoff error by adding terms of close relative magnitude
where the magnitude of the ratio of the two operands is close to unity, thus serving to
reduce, if not minimize, the number of places that the decimal point must be shifted.

Even without rearranging terms, the number of possible ways to sequence the
respective additions grows exponentially with the number of terms (more specifically,

proportional to the Catalan numbers, Cn = 1
n+1

(
2n
n

)
). There are a significant

number of established ordering algorithms which have been analyzed both in the
context of accuracy and complexity. (See (Hig:02, 2002) for the most recent survey
and relevant bibliography.) We will focus only on the two recursive algorithms:

1. the forward sum (summing from largest to smallest)
2. the backward sum (summing from smallest to largest)

(Note: We don’t have to use explicit functional recursion, iteration can be used as
well)

As the forward sum progresses, the partial sum increases as each subsequent
term to be included in the sum decreases. This is not desirable. It will cause a
progressive worsening of the cumulative effects of the roundoff errors as they become
more extreme.

The other problem that will occur is that, starting with some term, that term
and all subsequent terms will cease to contribute to the sum. This can be explained
by considering a decimal point shift of the smaller term so extreme that there is no
overlap between the significant digits of the larger term and the significant digits of
the smaller term, thus the smaller term cannot contribute to the sum. The backward
sum, however, maintains a much better ratio between the operands of each binary sum
because the magnitude of the successive terms are growing along with the running
partial sum.

There are three relevant bit fields of a radix 2 floating point number:

sign (one bit),

significand (usually normalized with an implicit leading bit),

exponent (biased).

The number of bits in the significand determine the precision of the number, i.e.
for example how many values may be exactly represented in the interval [0, 1). The
number of bits in the exponent field limits the range of values, i.e. how large or small
in magnitude can a representable number be.

There are a variety of important constants, derivable from the number of digits
of the significand and range. One of the most important is machine epsilon which
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represents the difference between 1.0 and the next larger representable floating point
number. (Over:01, 2001) Another way to characterize machine epsilon is that it is
the smallest floating point number A such that A + 1.0 6= 1.0.

When the ratio of a new term to the partial sum becomes smaller than the
machine epsilon for the working precision, the term will not contribute to the sum.
The machine epsilon value is a function of the number of digits of the significand. For
the forward sum, we will attain a small enough ratio for some iterate. It is at that
point that we will terminate the forward loop. We can then use the stopping term
of the forward sum as the starting term of the backward sum. We can then compare
the results.

Our computer language will usually provide a set of intrinsic fundamental float-
ing point types, If there are two or more, we can compare the forward and backward
sums in each precision to the backward sum in the highest precision. Additionally,
we can compute a closed form expression to approximate Hn: (Knuth, 1973)

Hn = ln n + γ +
1

2n
− 1

12n2
+

1

120n4
− ε, 0 < ε <

1

252n6
. (2)

Where γ represents Euler’s constant and has the value,

γ = 0.44742147706766606172232157437601002513132552 . . .

(Note: The first forward sum which determines the number of terms to sum
for all others must be performed in the type with the smallest precision, or it may
not terminate in a reasonable amount of time. Additionally, an integer loop counter
type of sufficient range must be selected.)

Objectives

This content may be presented in a lecture, lab, homework assignment, module,
or as some synergistic combination thereof.

I have found it helpful prior to working through this exercise to have the stu-
dents work through a lab exercise wherein they print out the set of constants which
characterize all of the integer types and floating point types for computing environ-
ment (language, architecture, and compiler) that they are using. In C++, these are
the constants from climits.h and cfloat.h. These constants include specifications
of significand size, precision, and range which will be relevant in the current exercise.
This prior lab also provides additional exposure to the topics of differing sizes for the
same basic data type.

Ostensible Objectives

The ostensible objective of this exercise is to provide the student with an ex-
ample of when they should use an event-controlled loop vs. a counter-controlled loop.
Because the student doesn’t know in advance the point at which the terms in the
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forward sum will cease contributing to the partial sum, they need to use an event-
controlled loop. When the sum stops changing, we exit the loop, and subtract one [ 1
] from the running count of terms we have added. Once the student has determined
the number of terms contributing to the sum, they can then use counter-controlled
loops for the other sums. The challenge for the student will be the crafting of the
event-controlled loop. The first decision the student must make is to decide between
the pre-test and post-test variants.

One example of this event-controlled loop in the C++ language is:

do
{
oldsum = newsum;
newsum = oldsum + 1.0f / ++terms;

} while (oldsum != newsum);
ffsum = newsum;

In my experience, students encounter difficulties getting the logic of the above
loop correct. I find it helps to hint about using an update expression such as
newValue = oldValue + smallCorrection.
Even with that hint, the average student will wrestle some with the logic.

Numerical Objectives

The principal numerical objectives of this exercise is to prepare the student to
answer correctly the following two questions relating to operations on floating point
data:

1. can (A + B) + C 6= A + (B + C) for some floating point A,B,C?
2. can (A + B) = A, where |B| > 0 for some floating point A,B?
Beyond answering these two questions, students receive exposure and practice

with the numerical effects of changing the floating point range and precision.
If one explains the representation of the floating point number, the student can

learn about two new ways to to complement integers

bias used for exponent – only one zero,

sign magnitude used for significand – two zeros,

in addition to those for binary integers they are usually exposed to

one’s complement not too common – two zeros,

two’s complement common – only one zero.

The IEEE 754 Floating Point Standard (IEEE, 1987; Kahan, 1995; Schwarz,
2003) should be at least mentioned as it is now implemented on virtually all modern
systems. Much of the following can bleed into an architecture and systems course



HARMONIC SUM CALC.:FIN. PREC. PRIN. IN CS1 6

where this exercise may be extended and generalized to help demonstrate the rela-
tionships between hardware, systems, and languages. The following significant topics
may be discussed in the context of the IEEE 754 standard and its implementation:

rounding rounding to infinite precision using two guard bits and a sticky bit;

rounding modes rounding to ±∞, 0, and nearest;

exact results not all floating point operations are inexact. A significant number are
exact for a certain set of operands;

±0 benefits and concerns regarding having two zeros;

5 exception flags invalid, division by zero, overflow, underflow, and inexact;

exception values NaN, ±Inf, subnormals – operations on and representations;

extended formats Implemented on some architectures such as the Intel X86 line.
I only know of double extended to be implemented. The standard leaves a lot
of latitude for differences among the implementations. (Priest, 1998)

FMAs & short vector SIMD functional units (Nievergelt, 2003)

Exploiting IEEE 754 exceptions A new software engineering paradigm for nu-
merical algorithms is to run the more robust (usually rescaling) method only
after catching a numeric exception; (Demmel & Li, 1994)

Benchmarking can provide additional information as well. If CPU timers
bracket each loop, the students can learn about the temporal effects of

loop overhead

different operations (add a loop variant which substitutes a multiplication for the
division – this will exhibit a significant difference on some architectures),

different precisions of the same type. Some architectures and compilers require
much more time for the longer precisions, e.g. long double in C++ on some
Sparc architectures.

function call overhead (add a loop variant which substitutes a function call to the
operation, and the restorative effect of inlining)

different languages Some languages impose a procrustean transformation on the
appearance to the user of the underlying architecture. E.g. Java requires all un-
derlying architectures to function like a Sparc (i.e. 64 bit double precision only
and no use of fused multiply-add units [FMAs]), resulting in significantly re-
duced speed and accuracy on some architectures such as Intel Pentium. (Kahan,
1998)
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different data On certain platforms, differing time penalties are imposed on oper-
ations involving certain IEEE 754 exceptional values, e.g. NaN, Inf, subnor-
mal. (Beebe, 2000)

optimization level The various optimization levels can have varying (usually pos-
itive) effects on the timing and the accuracy as well (e.g., allowing for the use
of FMAs or short vector SIMD instructions). (Nievergelt, 2003)

Closing

Certainly there’s enough important information regarding floating point, and
more generally, numerical computation to fill at least an entire undergraduate course
devoted to this topic alone. (Anda, 2003) However, in the context of this project, I
would hope that the at the conclusion of their CS1 course, students would take with
them at least an understanding that when they compute with floating point data
they should be alert to the possibility of weird behavior. Being forewarned, they
could then either proactively or reactively acquire the additional knowledge to better
understand the effects of their floating point computations.

I have outlined some extensions to the basic format of this project. I encourage
the use of these and other extensions of this project in subsequent computer science
or computational science courses beyond CS1 to assist students towards a better
understanding of floating point computation.
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