
Automatic Parallelization of Sequential C Code

Pete Gasper
Department of Mathematics and Computer Science

South Dakota School of Mines and Technology
peter.gasper@gold.sdsmt.edu

Caleb Herbst

Department of Mathematics and Computer Science
South Dakota School of Mines and Technology

calebherbst@hotmail.com

Jeff McGough
Department of Mathematics and Computer Science

South Dakota School of Mines and Technology
jeff.mcgough@sdsmt.edu

Chris Rickett

Department of Mathematics and Computer Science
South Dakota School of Mines and Technology

Christopher.Rickett@gold.sdsmt.edu

Gregg Stubbendieck
Department of Mathematics and Computer Science

South Dakota School of Mines and Technology
gregg.stubbendieck@sdsmt.edu

Abstract

As the cost of hardware declines and the demand for computing power increases, it is
becoming increasingly popular to turn to cluster computing. However, in order to gain
the benefits of cluster computing, an existing software base must be converted to a
parallel equivalent, or a new software base must be written. Both options require a
developer skilled in both parallel programming, as well as the problem domain at hand.
The ability to automate a conversion from sequential C code to a cluster-based equivalent
offers a developer the power of parallel computing with a minimal learning curve.

The following paper describes an ongoing project with the goal of automating the
conversion from sequential C code to cluster-based parallel code. Currently the project
relies on user input to guide the automation process, focusing on loop level
parallelization. Long term goals center on using dependency analysis to automate the
parallelization process.

1 Introduction

As the cost of hardware declines and the demand for computing power increases, it is
becoming increasingly popular to turn to cluster computing. However, in order to gain
the benefits of cluster computing an existing legacy software base must be converted to a
parallel equivalent, or a new software base must be written. Both options require a
developer skilled in both parallel programming, as well as the problem domain at hand.
The ability to automate a conversion from sequential code to a cluster-based equivalent
offers a developer the power of parallel computing with a minimal learning curve. This
paper will discuss the South Dakota School of Mines and Technology Cluster Group's
approach to automatic parallelization of legacy code.

Parallelization of sequential algorithms can be a difficult task. The tool produced by the
project aids the user in understanding a given program and the existing data
dependencies. Analyzing the sequential code and providing a graphical depiction of the
program execution are examples of such aids. The graphical representation then provides
a means for the user to define areas of code to be parallelized, as well as describe data
blocks involved. The user-provided information is necessary for the automated
parallelization process, in which Message Passing Interface (MPI) based code is
produced to replace the sequential code. One future project goal is to automate the
dependency analysis aspect of the user interaction. However, a certain level of user
interaction is often needed, or may improve, the parallelization process. In general the
automated approach may take a more conservative approach in determining data
dependencies, therefore the user may be able to describe a further degree of
parallelization.

2 Development Language

Java was chosen as the development language due to its cross-platform and object
oriented appeal. The project currently focuses on converting legacy C code to an C/MPI
parallel equivalent. The object-oriented nature of Java will allow the project to expand
its capabilities to further target languages such as Fortran 77 and Fortran 90, by adding
the necessary language objects.

3 Design Stages

Below is a brief description of the design stages chosen to implement the project. Each
step will receive greater detail throughout the remaining document.

1. Parse legacy C source code.
2. Create an abstract syntax tree representation of original C source.
3. Create a flow graph representation of the original C source code.
4. Create an intuitive, user-friendly, interface for the application.
5. Perform dependency analysis to determine parallelizable code segments.
6. Develop a workpool model for work distribution among nodes.
7. Emit the parallelized version of the source code.

The design diagram is shown in Figure 1.

1. Parse
Source

2. Create AST

3. Create
Flow Graph

5. Dependency
Analysis

7. Emit Parallel
Source

4. Create GUI

6. Create Workpool

Figure 1: Application Development Model

3.1 Parsing C Source Code

Parsing the source code paves the way for building the abstract syntax tree and flow
graph representation of the source code. Several language translation utilities exist.
ANTLR (Another Tool for Language Recognition) translator generator was chosen due
to its ability to generate Java source, as well as its inherent ability to generate parsers
capable of creating an abstract syntax tree on the fly [5].

ANTLR generates LL(k)-based recognition tools, meaning they perform a left-to-right
scan, using a leftmost derivation technique, looking ahead k tokens. A leftmost
derivation means the leftmost non-terminal is always expanded [5].

ANTLR was used to generate our C lexical analyzer and parser as Java source files.
These two files are named CLexer.java and CParser.java accordingly. The lexical
analyzer is created by defining tokens to match in the input stream. These tokens are
then passed to the parser, which matches a pattern of tokens into predefined grammar
rules. For ANTLR to generate the parser, a C grammar file must be created. The
grammar file defines the valid C language syntax rules. Below is an example parser rule
defined within the C grammar file.

assignmentOperator
 : ASSIGN
 | MUL_ASSIGN
 | DIV_ASSIGN
 | MOD_ASSIGN
 | ADD_ASSIGN
 | SUB_ASSIGN
 | LEFT_ASSIGN
 | RIGHT_ASSIGN
 | AND_ASSIGN
 | XOR_ASSIGN
 | OR_ASSIGN;

The above rule states that an assignment operator consists of either an =, *=, /=, %=, +=,
-=, <<=, >>=, &=, ^=, or |= symbol.

The next segment of the document will discuss the building of the abstract syntax tree
using our ANTLR generated parser.

3.2 Abstract Syntax Tree

In order to analyze the original source, the code must be stored for repeated access. The
data structure chosen to represent the source code internally is an abstract syntax tree
(AST) [4]. The AST represents the syntactic structure of the original source code. It
stores enough information to both analyze and reproduce the original source code [2].

The AST is designed such that blocks of code are grouped into a single subtree, with a
root node used to recognize the structure beneath. For example, the code contained
within a 'for' loop would be contained under a root node labeled 'forLoopStart.' These
labeled root nodes offer an easy traversal, allowing possible parallelizable code blocks to
easily be found.

The AST consists of nodes; each node holds the following information:

1. Token text - Text used to identify the token that was parsed and is stored in the
node.

2. Token type - The type associated with the node. For example,
XAssignmentOperator is the type associated with an '=' sign.

Other information may also be included, depending on the node type. For example,
nodes that contain compound statements also have the scope of the node included for
finding information about variables within the symbol table. ANTLR provides methods
that will allow the information held by a node to be manipulated.

The AST is built during the parsing of the input source code. ANTLR allows for an
AST to be generated automatically based upon the parser grammar rules. ANTLR also
allows the AST to be hand generated using user added directives within a given parser
rule [5]. By providing the preferred handling of the rules, some rules may be ignored
and others operated on to better structure the AST to match project needs.

The recursive nature of the grammar, specifying parsing rules, and the building of an
AST during the parsing, simplified the process of grouping code blocks into subtrees.
An AST node is defined for almost every token, except for tokens such as the ';' at the
end of statements. Furthermore, descriptive root nodes were added to label the subtrees,
such as the previously mentioned forLoopStart node. In general, the default ANTLR
structure of the AST was used, with minor changes in the ordering of child nodes and the
removal of others. These changes were made to simplify the AST structure, and do not
necessarily preserve precedence of the included tokens. Further, some ANTLR
generated nodes were not necessary for the analysis and were removed to reduce the size
of the AST. For example, the left and right parentheses of a function call were removed.
The parentheses may be assumed during the emitting of the code, later once the validity
of the syntax has been verified.

ANTLR has another feature, which is the ability to generate a tree walking routine based
on a grammar. The grammar is used to specify the structure of any subtree that may be
underneath a given node. By using a tree grammar, it is easier to define all possible
subtrees for a given node. These tree grammars offer a means to traverse a given AST,
while providing the ability to perform analysis operations while walking the nodes [5].

Rules defined by the tree grammar are not the same as those defined in the parser, due to
the removal of unnecessary syntax during the AST generation. Once the AST is built, the
rules for describing the subtrees of a node became simpler. However, one problem
encountered is rule ambiguity. By removing syntax, many rules in the tree walker could
be reduced to the same token leading to ambiguous rules. These ambiguities must be
removed to allow the tree walker to traverse the entire tree.

The AST offers a good generalized data structure to organize syntax, however to
maintain the overall flow of the program, another structure must be employed. The flow
graph representation is used to maintain the needed structure.

3.3 Flow Graph Representation

The flow graph provides the organization needed to analyze the flow of the program, and
to discover whether sections of the source are parallelizable. The flow graph is formed
by classifying the source code in terms of basic blocks.

A basic block is a sequence of consecutive statements in which flow of control enters at
the beginning and leaves at the end without halt or possibility of branching except at the
end [1]. Basic blocks are connected to each other using directed edges. A flow graph
has two special purpose blocks that define the entrance and exit points of the block. The
starting block is the single point at which execution starts in the flow graph, and the exit
block is the single point where execution leaves the flow graph.

A basic block contains a block number, a vector of AST root nodes, and the type of the
basic block. The block number is used to preserve ordering of the basic blocks. The
AST nodes are the roots to subtrees containing the source within the basic block. These
AST root nodes allow the source code contained within a basic block to be directly
accessed from that block. The basic block type represents the type of source contained
within the basic block. For example, the block may be of type DoWhileStart,
Conditional, ForLoopStart, etc.

A sample flow graph is shown graphically in Figure 2.

Entry

Statements

For Loop Start

For Loop Assignment

For Loop Conditional

Loop Statements

For Loop Increment

Exit

For Loop End

Figure 2: Flow Graph for 'For' Loop

The flow graph and abstract syntax tree store a generic representation of any serial source
file. They will be our main data structures for determining parallelizable code segments.

3.4 User Interaction

The long-term goals of this project focus on generating dependency analysis algorithms
capable of automatically recognizing parallelizable structures within the AST. Currently,
the application relies on user interaction through the graphical user interface. This

interaction allows the user to select parallelizable code segments from a graphical
depiction of the serial source code flow graph. The user may then define supporting
parameters to guide the generation of the parallel source code.

The following terminology will be used while discussing the parallelization process. A
parallel scope is a section of the flow graph selected by the user that contains
parallelizable components. The parallel scope is then broken into specific tasks. Finally
the tasks are broken into blocks. There are two layers of possible parallelism inherent in
the method. First of all, it may be possible to execute multiple tasks concurrently.
Furthermore, each task may be composed of blocks, which allow for data parallelism.

3.4.1 Defining Parallel Scopes and Tasks

After studying the flow graph resulting from the serial source code, the user must decide
what to parallelize. The user may rubber band a section of the flow graph to be
parallelized. Within that rubber-banded section, the user may then rubber band
individual tasks to be performed. There may be multiple tasks that will yield parallelism.
Once a user has defined a task, the graphical user interface will provide a means to enter
parameters needed to describe blocks for each specific task.

3.4.2 Block Definition

As mentioned, a task is comprised of blocks to promote parallelism. A block is not
restricted, in general, to representing a contiguous data item. Each block contains
supporting data to describe properties of the block. The following example is taken from
Dongarra, Duff, Sorensen, and van der Vorst [2], page 45. Figure 3 depicts a triangular
solver block diagram. Each block is defined using a user entered size, shape, and
movement. Each block represents an m by n group of data elements.

Figure 3: Triangular Solver Block Diagram

The first step in solving the system is computing the system A1x1 = b1. After x1 has been
computed, the result may be used to update B in the following manner.

b2 = b2 – A2x1

 b3 = b3 – A3x1

b4 = b4 – A4x1

b5 = b5 – A5x1

The equations may be executed in parallel due to the lack of data dependency between
them. The light gray blocks in Figure 3 represent the initial A1x1 = b1 blocks that must
used to solve x1. However, the dark gray blocks represent the update steps that may be
parallelized.

We will focus on the first iteration of the triangular solver update step to give example
block definitions. For matrix At in Figure 3, block 2 may be with a width of m, and a
height of n, entered by the user. For this example, block 2 does not need any movement.
Block 2 could simply be sent with blocks x1 and b2 to perform the update on a given
compute node.

The information provided by the user describing the blocks and movements involved in a
task is used to create a directed acyclic graph (DAG) describing the ordering of tasks for
execution. A DAG further describes the degree of parallelism possible. Figure 4 shows
the DAG for the first step of the triangular solver. In the figure, tasks 2-5 depend upon
task 1. Once task 1 is completed, tasks 2-5 may be executed in parallel. Upon their
completion, task 6 can be executed.

1

432 5

6

Solve for x1

Update

Solve for x2

Figure 4: Update Step DAG

4 MPI Workpool Model

The modified Message Passing Interface (MPI) Workpool is a model for accomplishing
tasks through a master-slave scheme. The workpool uses MPI for inter-node
communication purposes. The master node manages the workpool by keeping a list of
work to be done, keeping track of order of execution, and dispatching work. Worker
nodes request work, and act on that work using minimal instructions obtained from the
master node. After a worker completes a piece of work, it again queries the manager for
further work.

5 Source Emitter

The final step in the automation process is the MPI code generation. In this last step a
code emitter interacts with the flow graph, AST, and various data structures to recreate
the sequential code in parallel form. The emitter is designed such that the general
structure of the emitter remains the same, with only the problem specific portions
changing between source conversions.

The MPI-based parallel code is emitted into two files: master.c and slave.c. This differs
from the generally used single program multiple data model. These two files contain the
code that will run on the master node and slave nodes respectively. The emitted master
source contains the non-parallelizable source with newly inserted function calls to the
MPI workpool where parallelized sections have been moved to the slave source. The
master source also contains newly emitted helper functions to initialize the workpool
model for each removed parallel section. These functions are responsible for initializing
any arguments to be handed to the worker nodes, as well as any blocks to be defined for
the workers, and finally the general MPI initialization such as obtaining the number of
worker nodes available within the cluster.

While the master node has the job of managing the workpool and the program’s flow, the
worker nodes are restricted to parallelizable work presented via the workpool. Each
worker node is capable of executing several different work items depending upon the
master's request. Upon startup, the worker nodes perform a basic initialization, including
determining how many nodes are present in the cluster, as well as the initialization of the
Message Passing Interface engine. When a task is delegated to a worker node, that
worker selects the corresponding source to execute and performs the request. These tasks
are emitted into the slave source in the form of a case statement, with a given TaskID as
the lookup.

The goal of the source code emitter is to create a generalized means to generating parallel
source code. The overall structure for problem solving, using the workpool model,
remains consistent. However, problem specific portions of the master and slave source
must remain flexible enough to support the changing individual application demands.
Much of the support for generalization comes from the expandable objects inherent in the
Java language. Objects such as vectors and lists, offer a means to create dynamically
sized data structures. An example for such a demand might be the varying number of
blocks needed to describe different parallel segments within an application, or the
varying number of function prototypes to be emitted from application to application. The
more frequently such general data structures may be used, the more flexible the emitter
becomes.

6 Conclusion

The preliminary stages of this project centered on building the framework necessary to
promote automatic parallelization of sequential C code. The framework provides a means
to parse the sequential code into a generalized data structure and create a graphical

representation of the overall program flow of execution. Currently the user has the ability
to guide the automation process. Future work will focus on performing background
dependency analysis, reducing the amount of user input necessary to complete the
equivalent MPI source generation. In order to gain optimal parallelization, a balanced
combination between automation and user input may need to be reached.

This project is a step towards creating a smooth transition from a sequential code base, to
a cluster-based equivalent. By reducing the time and effort needed to produce a parallel
code base, more time may be dedicated to solving the problem domain.

References

1. Aho, A. V., Sethi, R., Ullman, J. D. (1986). Compilers: Principles, Techniques, and
Tools. Murray Hill, New Jersey: Bell Telephone Laboratories, Inc.

2. Dongarra, J. J., Duff, I. S., Sorenson, D. C., & van der Vorst, H. A. (1991). Solving

Linear Systems on Vector Shared Memory Computers. Philadelphia,
Pennsylvania: Society for Industrial and Applied Mathematics.

3. Morgan, R. (1998). Building an Optimizing Compiler. Woburn, Massachusetts:

Butterworth-Heinemann.

4. Muchnick, S. S. (1997). Advanced Compiler Design & Implementation. San Francisco,
California: Morgan Kaufmann.

5. Parr, Terence (02/16/2003). ANTLR – Complete Language Translation Solutions.

Retrieved June, 2003, from http://www.antlr.org.

