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Abstract 
 
As the cost of hardware declines and the demand for computing power increases, it is 
becoming increasingly popular to turn to cluster computing.  However, in order to gain 
the benefits of cluster computing, an existing software base must be converted to a 
parallel equivalent, or a new software base must be written.  Both options require a 
developer skilled in both parallel programming, as well as the problem domain at hand.  
The ability to automate a conversion from sequential C code to a cluster-based equivalent 
offers a developer the power of parallel computing with a minimal learning curve.   
  
The following paper describes an ongoing project with the goal of automating the 
conversion from sequential C code to cluster-based parallel code.   Currently the project 
relies on user input to guide the automation process, focusing on loop level 
parallelization. Long term goals center on using dependency analysis to automate the 
parallelization process. 



1 Introduction  

 
As the cost of hardware declines and the demand for computing power increases, it is 
becoming increasingly popular to turn to cluster computing.  However, in order to gain 
the benefits of cluster computing an existing legacy software base must be converted to a 
parallel equivalent, or a new software base must be written.  Both options require a 
developer skilled in both parallel programming, as well as the problem domain at hand.  
The ability to automate a conversion from sequential code to a cluster-based equivalent 
offers a developer the power of parallel computing with a minimal learning curve.  This 
paper will discuss the South Dakota School of Mines and Technology Cluster Group's 
approach to automatic parallelization of legacy code.   
 
Parallelization of sequential algorithms can be a difficult task.   The tool produced by the 
project aids the user in understanding a given program and the existing data 
dependencies.  Analyzing the sequential code and providing a graphical depiction of the 
program execution are examples of such aids.  The graphical representation then provides 
a means for the user to define areas of code to be parallelized, as well as describe data 
blocks involved.  The user-provided information is necessary for the automated 
parallelization process, in which Message Passing Interface (MPI) based code is 
produced to replace the sequential code.  One future project goal is to automate the 
dependency analysis aspect of the user interaction.  However, a certain level of user 
interaction is often needed, or may improve, the parallelization process. In general the 
automated approach may take a more conservative approach in determining data 
dependencies, therefore the user may be able to describe a further degree of 
parallelization.   

2 Development Language 

Java was chosen as the development language due to its cross-platform and object 
oriented appeal.  The project currently focuses on converting legacy C code to an C/MPI 
parallel equivalent.  The object-oriented nature of Java will allow the project to expand 
its capabilities to further target languages such as Fortran 77 and Fortran 90, by adding 
the necessary language objects.    



 

3 Design Stages 

Below is a brief description of the design stages chosen to implement the project.  Each 
step will receive greater detail throughout the remaining document.   
 

1.  Parse legacy C source code. 
2.  Create an abstract syntax tree representation of original C source. 
3.  Create a flow graph representation of the original C source code.   
4.  Create an intuitive, user-friendly, interface for the application. 
5.  Perform dependency analysis to determine parallelizable code segments.  
6.  Develop a workpool model for work distribution among nodes. 
7.  Emit the parallelized version of the source code.   

 
The design diagram is shown in Figure 1.   
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Figure 1: Application Development Model 
 

3.1 Parsing C Source Code 

Parsing the source code paves the way for building the abstract syntax tree and flow 
graph representation of the source code.  Several language translation utilities exist.  
ANTLR (Another Tool for Language Recognition) translator generator was chosen due 
to its ability to generate Java source, as well as its inherent ability to generate parsers 
capable of creating an abstract syntax tree on the fly [5].   
 
ANTLR generates LL(k)-based recognition tools, meaning they perform a left-to-right 
scan, using a leftmost derivation technique, looking ahead k tokens.  A leftmost 
derivation means the leftmost non-terminal is always expanded [5].   
 



ANTLR was used to generate our C lexical analyzer and parser as Java source files.  
These two files are named CLexer.java and CParser.java accordingly.  The lexical 
analyzer is created by defining tokens to match in the input stream.   These tokens are 
then passed to the parser, which matches a pattern of tokens into predefined grammar 
rules.  For ANTLR to generate the parser, a C grammar file must be created.  The 
grammar file defines the valid C language syntax rules.   Below is an example parser rule 
defined within the C grammar file.   
 

assignmentOperator 
 : ASSIGN 
 | MUL_ASSIGN 
 | DIV_ASSIGN 
 | MOD_ASSIGN 
 | ADD_ASSIGN 
 | SUB_ASSIGN 
 | LEFT_ASSIGN 
 | RIGHT_ASSIGN 
 | AND_ASSIGN 
 | XOR_ASSIGN 
 | OR_ASSIGN; 
 

The above rule states that an assignment operator consists of either an =, *=, /=, %=, +=, 
-=, <<=, >>=, &=, ^=, or |= symbol.   
 
The next segment of the document will discuss the building of the abstract syntax tree 
using our ANTLR generated parser.   

3.2 Abstract Syntax Tree 

In order to analyze the original source, the code must be stored for repeated access.  The 
data structure chosen to represent the source code internally is an abstract syntax tree 
(AST) [4].   The AST represents the syntactic structure of the original source code.   It 
stores enough information to both analyze and reproduce the original source code [2].    
 
The AST is designed such that blocks of code are grouped into a single subtree, with a 
root node used to recognize the structure beneath.   For example, the code contained 
within a 'for' loop would be contained under a root node labeled 'forLoopStart.'  These 
labeled root nodes offer an easy traversal, allowing possible parallelizable code blocks to 
easily be found.      
 
The AST consists of nodes; each node holds the following information: 
 

1.  Token text - Text used to identify the token that was parsed and is stored in the 
node. 

2.   Token type - The type associated with the node.   For example, 
XAssignmentOperator is the type associated with an '=' sign.    

 



Other information may also be included, depending on the node type.   For example, 
nodes that contain compound statements also have the scope of the node included for 
finding information about variables within the symbol table.   ANTLR provides methods 
that will allow the information held by a node to be manipulated.    
 
The AST is built during the parsing of the input source code.   ANTLR allows for an 
AST to be generated automatically based upon the parser grammar rules.  ANTLR also 
allows the AST to be hand generated using user added directives within a given parser 
rule [5].   By providing the preferred handling of the rules, some rules may be ignored 
and others operated on to better structure the AST to match project needs. 
 
The recursive nature of the grammar, specifying parsing rules, and the building of an 
AST during the parsing, simplified the process of grouping code blocks into subtrees.   
An AST node is defined for almost every token, except for tokens such as the ';' at the 
end of statements.   Furthermore, descriptive root nodes were added to label the subtrees, 
such as the previously mentioned forLoopStart node.  In general, the default ANTLR 
structure of the AST was used, with minor changes in the ordering of child nodes and the 
removal of others.   These changes were made to simplify the AST structure, and do not 
necessarily preserve precedence of the included tokens.   Further, some ANTLR 
generated nodes were not necessary for the analysis and were removed to reduce the size 
of the AST.  For example, the left and right parentheses of a function call were removed.  
The parentheses may be assumed during the emitting of the code, later once the validity 
of the syntax has been verified.    
 
ANTLR has another feature, which is the ability to generate a tree walking routine based 
on a grammar.   The grammar is used to specify the structure of any subtree that may be 
underneath a given node.   By using a tree grammar, it is easier to define all possible 
subtrees for a given node.  These tree grammars offer a means to traverse a given AST, 
while providing the ability to perform analysis operations while walking the nodes [5].     
 
Rules defined by the tree grammar are not the same as those defined in the parser, due to 
the removal of unnecessary syntax during the AST generation.  Once the AST is built, the 
rules for describing the subtrees of a node became simpler.   However, one problem 
encountered is rule ambiguity.   By removing syntax, many rules in the tree walker could 
be reduced to the same token leading to ambiguous rules.   These ambiguities must be 
removed to allow the tree walker to traverse the entire tree.    
 
The AST offers a good generalized data structure to organize syntax, however to 
maintain the overall flow of the program, another structure must be employed.  The flow 
graph representation is used to maintain the needed structure. 

3.3 Flow Graph Representation 

The flow graph provides the organization needed to analyze the flow of the program, and 
to discover whether sections of the source are parallelizable.  The flow graph is formed 
by classifying the source code in terms of basic blocks.   



 
A basic block is a sequence of consecutive statements in which flow of control enters at 
the beginning and leaves at the end without halt or possibility of branching except at the 
end [1].  Basic blocks are connected to each other using directed edges.   A flow graph 
has two special purpose blocks that define the entrance and exit points of the block.   The 
starting block is the single point at which execution starts in the flow graph, and the exit 
block is the single point where execution leaves the flow graph. 
 
A basic block contains a block number, a vector of AST root nodes, and the type of the 
basic block.  The block number is used to preserve ordering of the basic blocks.  The 
AST nodes are the roots to subtrees containing the source within the basic block.  These 
AST root nodes allow the source code contained within a basic block to be directly 
accessed from that block.  The basic block type represents the type of source contained 
within the basic block.  For example, the block may be of type DoWhileStart, 
Conditional, ForLoopStart, etc.   
 
A sample flow graph is shown graphically in Figure 2. 
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Figure 2: Flow Graph for 'For' Loop 
 

The flow graph and abstract syntax tree store a generic representation of any serial source 
file.  They will be our main data structures for determining parallelizable code segments.   

3.4 User Interaction 

The long-term goals of this project focus on generating dependency analysis algorithms 
capable of automatically recognizing parallelizable structures within the AST.  Currently, 
the application relies on user interaction through the graphical user interface.  This 



interaction allows the user to select parallelizable code segments from a graphical 
depiction of the serial source code flow graph.  The user may then define supporting 
parameters to guide the generation of the parallel source code.   
 
The following terminology will be used while discussing the parallelization process.  A 
parallel scope is a section of the flow graph selected by the user that contains 
parallelizable components.  The parallel scope is then broken into specific tasks.  Finally 
the tasks are broken into blocks.  There are two layers of possible parallelism inherent in 
the method.  First of all, it may be possible to execute multiple tasks concurrently.  
Furthermore, each task may be composed of blocks, which allow for data parallelism. 

3.4.1 Defining Parallel Scopes and Tasks 

After studying the flow graph resulting from the serial source code, the user must decide 
what to parallelize.  The user may rubber band a section of the flow graph to be 
parallelized.  Within that rubber-banded section, the user may then rubber band 
individual tasks to be performed.  There may be multiple tasks that will yield parallelism.  
Once a user has defined a task, the graphical user interface will provide a means to enter  
parameters needed to describe blocks for each specific task.   

3.4.2 Block Definition  

As mentioned, a task is comprised of blocks to promote parallelism.  A block is not 
restricted, in general, to representing a contiguous data item. Each block contains 
supporting data to describe properties of the block.  The following example is taken from 
Dongarra, Duff, Sorensen, and van der Vorst [2], page 45.  Figure 3 depicts a triangular 
solver block diagram. Each block is defined using a user entered size, shape, and 
movement. Each block represents an m by n group of data elements.  
 

 
Figure 3: Triangular Solver Block Diagram 

 
The first step in solving the system is computing the system A1x1 = b1. After x1 has been 
computed, the result may be used to update B in the following manner.  
 

b2 = b2 – A2x1 

 b3 = b3 – A3x1  



b4 = b4 – A4x1  

b5 = b5 – A5x1 

 

The equations may be executed in parallel due to the lack of data dependency between 
them. The light gray blocks in Figure 3 represent the initial A1x1 = b1 blocks that must 
used to solve x1. However, the dark gray blocks represent the update steps that may be 
parallelized.  
  
We will focus on the first iteration of the triangular solver update step to give example 
block definitions. For matrix At in Figure 3, block 2 may be  with a width of m, and a 
height of n, entered by the user. For this example, block 2 does not need any movement. 
Block 2 could simply be sent with blocks x1 and b2 to perform the update on a given 
compute node.  
 
The information provided by the user describing the blocks and movements involved in a 
task is used to create a directed acyclic graph (DAG) describing the ordering of tasks for 
execution.  A DAG further describes the degree of parallelism possible. Figure 4 shows 
the DAG for the first step of the triangular solver. In the figure, tasks 2-5 depend upon 
task 1.  Once task 1 is completed, tasks 2-5 may be executed in parallel.  Upon their 
completion, task 6 can be executed. 
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Figure 4: Update Step DAG 

4 MPI Workpool Model 

The modified Message Passing Interface (MPI)  Workpool is a model for accomplishing 
tasks through a master-slave scheme.  The workpool uses MPI for inter-node 
communication purposes.  The master node manages the workpool by keeping a list of 
work to be done, keeping track of order of execution, and dispatching work.  Worker 
nodes request work, and act on that work using minimal instructions obtained from the 
master node.  After a worker completes a piece of work, it again queries the manager for 
further work.   



5 Source Emitter 

The final step in the automation process is the MPI code generation.  In this last step a 
code emitter interacts with the flow graph, AST, and various data structures to recreate 
the sequential code in parallel form.  The emitter is designed such that the general 
structure of the emitter remains the same, with only the problem specific portions 
changing between source conversions.   
 
The MPI-based parallel code is emitted into two files: master.c and slave.c. This differs 
from the generally used single program multiple data model.  These two files contain the 
code that will run on the master node and slave nodes respectively.  The emitted master 
source contains the non-parallelizable source with newly inserted function calls to the 
MPI workpool where parallelized sections have been moved to the slave source.  The 
master source also contains newly emitted helper functions to initialize the workpool 
model for each removed parallel section.  These functions are responsible for initializing 
any arguments to be handed to the worker nodes, as well as any blocks to be defined for 
the workers, and finally the general MPI initialization such as obtaining the number of 
worker nodes available within the cluster.   
 
While the master node has the job of managing the workpool and the program’s flow, the 
worker nodes are restricted to parallelizable work presented via the workpool.  Each 
worker node is capable of executing several different work items depending upon the 
master's request.  Upon startup, the worker nodes perform a basic initialization, including 
determining how many nodes are present in the cluster, as well as the initialization of the 
Message Passing Interface engine.  When a task is delegated to a worker node, that 
worker selects the corresponding source to execute and performs the request.  These tasks 
are emitted into the slave source in the form of a case statement, with a given TaskID as 
the lookup. 
 
The goal of the source code emitter is to create a generalized means to generating parallel 
source code.  The overall structure for problem solving, using the workpool model, 
remains consistent.  However, problem specific portions of the master and slave source 
must remain flexible enough to support the changing individual application demands.  
Much of the support for generalization comes from the expandable objects inherent in the 
Java language.  Objects such as vectors and lists, offer a means to create dynamically 
sized data structures.  An example for such a demand might be the varying number of 
blocks needed to describe different parallel segments within an application, or the 
varying number of function prototypes to be emitted from application to application.  The 
more frequently such general data structures may be used, the more flexible the emitter 
becomes.      

6 Conclusion 

The preliminary stages of this project centered on building the framework necessary to 
promote automatic parallelization of sequential C code. The framework provides a means 
to parse the sequential code into a generalized data structure and create a graphical 



representation of the overall program flow of execution. Currently the user has the ability 
to guide the automation process. Future work will focus on performing background 
dependency analysis, reducing the amount of user input necessary to complete the 
equivalent MPI source generation. In order to gain optimal parallelization, a balanced 
combination between automation and user input may need to be reached.  
 
This project is a step towards creating a smooth transition from a sequential code base, to 
a cluster-based equivalent. By reducing the time and effort needed to produce a parallel 
code base, more time may be dedicated to solving the problem domain.  
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