
Scientific Computing Tool

Ajaykumar Poondla
Department of Mathematics and Computer Science

South Dakota School of Mines and Technology
Email: ajaykumarpoondla@hotmail.com

Haining Liu

Department of Mathematics and Computer Science
South Dakota School of Mines and Technology

Email: hliu9834@hotmail.com

Jeff.S.McGough

Department of Mathematics and Computer Science
South Dakota School of Mines and Technology

Email: jeff.mcgough@sdsmt.edu

ABSTRACT

The success of high performance computing in modeling scientific and engineering
applications motivates the development of ambitious applications. An efficient solution
for solving scientific problems on a cluster has been and is still of high interest. In this
paper, we present the Scientific Computing Tool.

The Scientific Computing Tool provides a Graphical User Interface (GUI) in which the
user can enter geometric shapes in one, two or three dimensions, and information about
the shapes. The tool will then take the necessary parameters for solving the linear elliptic
partial differential equations on a rectilinear domain. The program will generate a
sequential code or parallel code as requested by the user for a finite difference
approximation defined on the domain using the iterative methods Jacobi, Gauss Seidel,
Successive Over Relaxation methods. The serial code is implemented in C. The parallel
code is implemented in C++ using POOMA library. This tool allows the user to compile,
run and generate a graph in the GUI using Gnuplot.

Keywords: Scientific Computing, Domain Decomposition, Elliptic PDE, POOMA,

 Jacobi, Gauss and SOR, Graphical User Interface.

Introduction

The computer science department at SD School of Mines and Technology started a
Beowulf Cluster Project (Cluster Computing and Visualization) in spring 2002. This
project aims at using “off-the-shelf” components to build a parallel computer to perform
the numerous complex operations required for visualization of large data sets. We
decided to come up with a tool that simplifies the code development in Scientific
Computing. The purpose of Scientific Computing Tool is to create a Graphical User
Interface in which you can enter in geometric shapes in one, two or three dimensions.
The tool then will take the necessary parameters for solving a linear elliptic partial
differential equation on a rectilinear domain and generate code for a finite difference
approximation defined on the domain using the stationary iterative methods Jacobi,
Gauss Seidel and Successive Over Relaxation methods. Since domain decomposition
methods are based on partitioning of the domain of the physical problem and each sub
domain can be handled independently, this tool is very effective on a cluster.

This tool streamlines the development of scientific codes. This includes the process of
modeling, discretization, solving and parallelization of problems from various fields of
applications[5]. The various fields of Scientific Computing include weather prediction,
Seismic data processing, astrophysics, Nuclear Engineering and Image processing. This
tool is readily accessible to scientific application developers whose background does not
include computer science. This tool leverages existing sophisticated codes like POOMA
to achieve this. The Parallel Object Oriented Methods and Applications (POOMA)
Toolkit is an open-source software for writing high performance Scientific Computing
Programs on parallel computers, which was originally developed by scientists at
Advanced Computing Laboratory at Los Alamos National Laboratory (LANL), and is
maintained by CodeSourcery, LLC (http://www.codesourcery.com) [8,9]. Also, a
Cheetah messaging library provided by LANL, an underlying messaging library
Messaging Passing Interface (MPI) from Argonne National Laboratory Computation
Institute, as well as MM Shared Memory Library are coupled with POOMA, in order to
take the advantages of high performance parallel computing of POOMA over multiple
processors or cluster system

The scientific computing tool provides an easy-to-use interface and is a far better means
of communication than text-based alternatives. Extensive use of visual navigation
features such as buttons, menus and trees and intuitive manipulation of data will make
this tool convenient for the scientific computing world. The tools needed to build and test
Java programs are available without charge. Sun makes the Java Development Kit (JDK)
available over the Internet (at http://www.javasoft.com/), where any individual can
download it. The JDK--which includes the Java compiler and interpreter, among other
tools is undoubtedly very simple to use.

Description of the problem

Partial Differential Equations describe the modeling of physical processes taking place in
our surroundings. A Partial Differential Equation (PDE) is a type of equation in which
the unknown can represent some of the things like the temperature, or the shape of the
wave, or stress in a bent piece of metal. A PDE is an equation involving one or more
partial derivatives of an unknown function of multiple variables [3].

A general second-order partial differential equation looks like this.

where a, b, c, d, e, f and g can be functions of both the independent variables x and y and
the dependent variable u. This equation is said to be elliptic when 042 <− acb ,
parabolic when 042 =− acb and hyperbolic when .042 >− acb Elliptic partial
differential equations arise usually from equilibrium or steady-state problems and their
solutions [3].

The goal is to solve elliptic partial differential equation

in the domain),(),(1010 yyxxx=Ω , subject to the Dirchlet boundary condition u=Gi

on Ω∂ . This problem can be solved using the method of finite differences. The method of
finite differences is easy to implement and it gives good results of boundary value
problems. In this method, the derivatives appearing in the equation and the boundary
conditions are replaced by their finite difference approximations [2]. Then the given
equation is changed to a difference equation, which is solved by iterative procedures. By
replacing the given derivatives with their finite difference approximations we get

2
),(

2

2),1(),(2),1(
h

jiujiujiu
x
u

ji

−+−+≅





∂
∂

 2
),(

2

2)1,(),(2)1,(
k

jiujiujiu
y
u

ji

−+−+≅





∂
∂

h

jiujiu
x
u

ji 2
),1(),1(

),(

−−+≅






∂
∂

k

jiujiu
y
u

ji
2

)1,()1,(

),(

−−+≅





∂
∂

hk
jiujiujiujiu

yx
u

ji
4

)1,1()1,1(()1,1()1,1(

),(

2 −+++−−−−+++≅





∂∂

∂

where h is the step size between discrete points and is equal to
N

ab)(−
 and k is the

discrete points and is equal to
M

cd)(−
.

0
2

22

2

2

=++
∂
∂+

∂
∂+

∂
∂+

∂∂
∂+

∂
∂

gfu
y
u

e
x
u

d
y
u

c
yx

u
b

x
u

a

0
2

22

2

2

=++
∂
∂+

∂
∂+

∂
∂+

∂∂
∂+

∂
∂

gfu
y
u

e
x
u

d
y
u

c
yx

u
b

x
u

a

 The above equation can be solved by dividing Ω into NxM cells and applying central
difference formula at each of (N – 1) x (M – 1) interior grid points.

Figure 1

For the grid point in the ith row and jth column of the grid gives the formula

04),()1,1()1,1()1,1()1,1(

)1,()1,(),1(),1(
22

98765

4321

=++−−++−+−++++

+−+++−++

khgjiuAjiuAjiuAjiuAjiuA

jiuAjiuAjiuAjiuA

Equation 1









+−−++−+−++++

+−+++−++−=
22

8765

4321

9 4)1,1()1,1()1,1()1,1(

)1,()1,(),1(),1(1
),(

khgjiuAjiuAjiuAjiuA

jiuAjiuAjiuAjiuA

A
jiu

where NyjNxi ≤≤≤≤ 1,1 ,

2222
98

765
22

4

22
3

22
2

22
1

884,

,,,,24

,24,24,24

akchkfhAbhkA

bhkAbhkAbhkAehkchA

ehkchAdhkakAdhkakA

−−==

−=−==−=

+=−=+=

Equation1 can be solved using stationary methods Jacobi, Gauss-Seidel, Successive Over
Relaxation and non-stationary methods like Conjugate Gradient Method and GMRES.

Existing Approach

Grid based problems are common in scientific computing. An efficient solution to solve
the partial differential equations has been and is still of interest. The following are the
tools that are commonly used by scientific computing world.

Matlab: Matlab is a high level interpreted programming language generally used for high
performance numerical computation and visualization The Matlab PDE solver, pdepe,
solves initial-boundary value problems for systems of parabolic and elliptic PDEs in the
one space variable x and time t.

Mathematica: Mathematica[9], software developed by the company Wolfram Research,
is a numeric and symbolic calculation system that incorporates an excellent programming
language and the capacity of integrating calculations, graphics and text, in oneself
document electronic, called notebook.

Maple: The Maple system is an advanced, mathematical problem solving and
programming environment.

PETSc: PETSc is a software library that provides data structures and routines for the
solving scientific applications modeled by partial differential equations on parallel or
serial computers. To provide portability across networks of workstations PETSC uses
customized message-passing system.

POOMA: POOMA (Parallel Object-Oriented Methods and Applications) is a collection
of templated C++ classes for writing parallel PDE solvers using finite-difference and
particle methods. It provides a variety of tools in supporting scientific computing with
features of [6],

• Containers and other abstractions for scientific computation,
• Support for a variety of computation modes, such as data parallel, stencil-based

computations, and lazy evaluation, as well as parallel and distributed computation
programs writing.

• Robots of all inter process communication for parallel and distributed routines,
out of order execution, and loop rearrangement for efficient program execution.

With POOMA high-level abstractions, the programs written in POOMA are much shorter
than conventional FORTRAN or C programs. The code is also easier to debug. The
toolkit is compatible with most of C++ compliers.

Limitations in existing software

Solving scientific applications generally involves a great deal of arithmetic. One of the
major problems faced by the programmer is to convert the mathematical concept into
efficient algorithm developed in some programming language. Though the existing
software has come up with a programming environment, still the user is expected to write
his code for a specified input. This becomes an uphill task to write a parallel code, which
requires a different algorithm.

Scientific Computing Tool

This tool generates code a serial code and parallel code for a user specified input to solve
a general elliptic partial differential equations. The serial code is implemented in C. The
parallel code is implemented in C++ using POOMA library.

 The user interface provides a similar look and feel to a GUI based program and is
implemented using Java Swing for increased portability to other operating systems. To
the greatest degree possible, the layout and functionality of menus, dialog boxes, and
toolbars follows the standard GUI guidelines for Software Design.

The following are the important classes used in our system for generating the code to
solve elliptic partial differential equations.

Start: This is the starting point of the tool. This brings up the splash screen and provides
the user the details of the system he is running and it directs to the pdetool.

Pdetool: This is the heart of the tool. This class represents the view of the hierarchical
data of the PDE.

Figure 2

As the preceding figure shows, the nodes of the tree contain Elliptic, Parabolic,
Hyperbolic, and elliptic node containing the children one dimensional, two dimensional,
three-dimensional. When the user right clicks one dimensional, two dimensional, three-
dimensional the corresponding sub nodes containing line, rectangle, cube, are obtained.
When the user clicks the node line, rectangle, ellipse, circle and cube the corresponding
object is created in an internal frame. The internal frame can be resized and moved
through out the window. When the user clicks line/rectangle/cube, a wizard is created
that takes in the necessary inputs for handling the PDE problem. This is handled in the
host class.

Host: This contains a handle to an array of panels each representing one-step wizard
process. This also captures the input given by the user.

Frame: Based on the input entered by the user this class writes them in a syntactically
correct format and calls the corresponding solver to solve the particular problem.

The following is the class diagram of the scientific computing tool.

Figure 3

A parallel sample code generated by use of scientific computing tool for solving a
variable Poisson equation with variable coefficients and boundary conditions is shown
below.

#include "Pooma/Arrays.h"
#include <iostream>
#include <fstream.h>

#define Nx 10
#define Ny 10
#define stride 2
#define Iteration 200

#define hsquare ((double)Nx-1.0)/((double)(Nx*Nx))
#define ksquare ((double)Ny-1.0)/((double)(Ny*Ny))

//Define the coefficients a, b, and c.
inline double A(double, double);
inline double B(double, double);
inline double C(double, double);

inline double A(double x, double y) {return x+y;}
inline double B(double x, double y) {return x+y;}
inline double C(double x, double y) {return x+y;}

//Boundary conditions to be applied.
inline double g1(double,double);
inline double g2(double,double);
inline double g3(double,double);
inline double g4(double,double);

inline double g1(double x,double y){ return x+y;}
inline double g2(double x,double y){ return x+y;}
inline double g3(double x,double y){ return x+y;}
inline double g4(double x,double y){ return x+y;}

// Apply a Jacobi iteration on the given domain.
void ApplyJacobi(
 const Array<2> & V, // the domain to be solved.
 const Array<2> & a, // the domain to be solved.
 const Array<2> & b, // the domain to be solved.
 const Array<2> & c, // the domain to be solved.
 const Range<1> & I, // x axis subscript
 const Range<1> & J // y axis subscript
)
{
 V(I,J) = (1.0/(2.0*(ksquare*a(I,J) + hsquare*b(I,J)))
)*
 ((ksquare*a(I,J))*(V(I+1,J) + V(I-1,J))
 + (hsquare*b(I,J))*(V(I,J+1) + V(I,J-1))
 - c(I,J)*hsquare*ksquare
);
}

//Calculate the sum of squares errors in a 2D Array.
//No modification needs below.
template<class ValueType, class EngineTag>
ValueType sum_sqr (const Array<2, ValueType, EngineTag>
&A)
{
 ValueType sum = 0.0;

 int begin_0 = A.first(0), end_0 = A.last(0), begin_1 =
A.first(1),
 end_1 = A.last(1);

 // Must block before scalar loop.
 Pooma::blockAndEvaluate();

int
main(int argc, // argument count
 char *argv[] // argument list
)
{
 ofstream osf;

 // Initialize Pooma.
 Pooma::initialize(argc, argv);

 // The array to be solved, zero out.

 Array<2> V(Nx, Ny);
 V = 0.0;

 // The right hand side function of the equation f(x,y):
 //Initialization
 Array<2> a(Nx, Ny);
 a = 0.0;

 Array<2> b(Nx, Ny);
 b = 0.0;

 Array<2> c(Nx, Ny);
 c = 0.0;

 // Must block before scalar code.
 Pooma::blockAndEvaluate();

 //Define f(x,y)
 for(int x = 0; x < Nx; ++x)
 for(int y = 0; y < Ny; ++y){
 a(x,y) = A(1,0); //coefficient of uxx
 b(x,y) = B(1,0); //coefficient of uyy
 c(x,y) = C(0,0); //right hand side function
 }

 c(Nx/2,Ny/2) = (double) -Nx/2.0;

 for(int x = 0; x < Nx; ++x) {
 V(x,0) = g1(0,0);
 V(x,Ny-1) = g2(0,0);
 }

 for(int y = 0; y < Ny; ++y){
 V(0,y) = g3(0,0);
 V(Nx-1,y) = g4(0,0);
 }

 // The interior domain, now with number of stride.
 // No modification is needed below at this time.
 Range<1> I(1, Nx-(stride+1), stride), J(1, Ny-(stride+1), stride);

 // Iterate till converged, or maximum Iteration steps.
 double SSErr = 0.01; // anything greater than threshold
 int iteration;
 for (iteration=0; iteration < Iteration && SSErr > 1e-6;
++iteration)
 {
 //Red block
 ApplyJacobi (V, a, b, c, I, J);
 ApplyJacobi (V, a, b, c, I+1, J+1);
 //Black block

 for (int x = begin_0; x <= end_0; ++x)
 {

 for (int y = begin_1; y <= end_1; ++y)
 {
 ValueType value = A.read(x, y);
 sum += value * value;
 }
 }

 return sum;
}

 ApplyJacobi (V,a, b, c, I+1, J);
 ApplyJacobi (V,a, b, c, I, J+1);
 //Compute residual.
 SSErr = sum_sqr ((V(I+1,J) + V(I-1,J))*ksquare*a(I,J)
 + (V(I,J+1) + V(I,J-1))*hsquare*b(I,J)
 - (c(I,J)*hsquare*ksquare
 + 2.0*(ksquare*a(I,J) + hsquare*b(I,J))*V(I,J)
));
 }

 // Print out the result.
 std::cout << "Iterations = " << iteration << std::endl;
 std::cout << "Residual = " << SSErr << std::endl;
 std::cout << "Solved domain size in " << Nx << " x " << Ny <<
"." << std::endl;
 //Write the result to file.
 osf.open ("result.txt");
 osf << V << std::endl;
 osf.close ();

 // Clean up and report success.
 Pooma::finalize();
 return 0;
}

The entire code generation was divided into three steps. The flow diagram shown below
describes how the code generation was handled effectively within the scientific
computing tool.

 (Step I)
Define program prototype & header files

 (Step II)
Translate the user inputs to a syntactically
correct way that can be understood by the
compiler

(Step III)
Create source code using a template that
handles the above inputs.

Results and Discussion

The goal of this project is to come up with a small prototype in building a generic tool
that is suitable for scientific computing on a cluster. As the first step, we tested the tool
for the linear elliptic partial differential equations. The generated code was compiled and
run on the cluster. In the case of parallel code execution, a cluster with 4 nodes, running
Pentium III 440 MHz processor and 256 MB RAM was used for testing performance.
10/100 Base-T Faster Ethernet card is used for communications between nodes.

Figure 4 illustrates the performance of the three solvers of using different algorithms for
solving a Poisson equation on a rectangular grid with sequential code implemented in C.

A simple method for solving the above equation is to iteratively apply the equation until
there is little change in u. This is the Jacobi iterative method for solving the equation. A
modification of this process, called the Gauss-Seidel method, may find the solution in
fewer iterations. As described in Introduction to Parallel Algorithms and Architectures,
page 98, this method suggests that we can calculate the new values of all the even-parity
points using equation 1; then calculate the new values for all of the odd-parity points
using the values just calculated for the even parity points[1]. The parity of the point (i/N
, j/N) is defined to be even if i + j is even and odd if i + j is odd. This will cause the
method to converge in fewer iterations, but may not be beneficial for small matrices since
this requires two communications per iteration instead of one for Jacobi’s method. Gauss-
Seidel iteration method can be further be improved by changing the convergence rate
using the Successive over relaxation (SOR) method. Application of SOR to the above set
of equation gives

1

,,
1

,)1(++ +−= m
ji

m
ji

m
ji uuu ωω Where 1 < ω < 2.

The value of ω is normally





















+

+
yx NN

π2
sin1

0.2
 .

Where Nx, Ny are the size of the grid along the x and y-axis.

Comparison of Performance of 3 Stationary Iterative Methods

0

50

100

150

200

250

300

350

0 2000 4000 6000 8000 10000

Number of Grid Points

Ti
m

e
(s

ec
on

ds
)

Jacobian

Gauss Seidel

Successive over
Relaxation

The following is a graph generated by the tool for solving 02

22

2

2

=
∂
∂+

∂∂
∂+

∂
∂

y
u

yx
u

x
u

 in the

domain Ω=(0,1)x(0,1), subject to the dirchlet boundary condition u = sinh(x)*sin(10*y)
on ∂Ω..

Figure 4. Comparison of performance of three algorithms implemented
in the serial code.

As a comparison, Figure 5 shows the performance of execution of a parallel code by
applying Jacobi Iteration Relaxation method to solve the same problem over 4 nodes
cluster system. One may wonder how this parallel code could be so efficient, it might
have been too good to be true. However, with careful examination of the sample parallel
code, one can observe that the implementation of Jacobi Iteration Relaxation algorithm
has taken the benefits of data parallel expression on POOMA. As it has been show in the
sample code, both parameters and variable (unknown) were defined as Array objects. The
initialization of these array objects was done with single statement, but none for loop
presents. The Range objects shown in the sample code (one dimension in this case),
benefit the representation of index sequences with non-unit strides, which provides an
efficient way to define non-adjacent array elements in parallel fashion. The Red/Black
block operations within iteration loop further improve the parallel performance on
computing, it reduces the amount of memory that a program requires [9].

Comparison of Performance of Parallel vs. Sequential
Computation

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

0 5000 10000 15000 20000 25000

Number of Grid Points

Ti
m

e
(s

ec
on

ds
)

Parallell Code
Sequential Code

Another important point should be addressed here regarding POOMA highly abstractive
objects is that it uses a type of object called Engine, a key to the POOMA high
performance [7]. An engine is an abstractive object implemented in POOMA, which
performs the low-level value storage, computation, and element wise access for a
container [6]. The function sum_sqr () shown in the sample code takes the advantages of
Engines. It is completely different form other languages that use whole-array operations,
which usually requires temporary array for holding data. In fact, during the computing
process, the arrays do not store data in POOMA, but act as handles on an engine. The
engine knows how to evaluate and return values on the given sets of indices

Figure 5. Comparison of performance of parallel versus sequential
code.

corresponding the predefined arrays. That is, engine can reference data storage directly,
and translate a set of indices into a value by looking up the value based on the indices in
memory.

An interesting observation from Figure 5 is the overhead of interprocess communication
among the nodes of cluster for parallel code execution. Initially, the grid size is relatively
small, such that sequential code execution is much faster than parallel code, because the
communication overhead can’t be eliminated for the parallel code. In fact, for a small
grid size, the parallel code is not the first choice for efficiency concern.

Conclusions & Future Enhancements

In this project, it is aim to develop a tool that simplifies the code development in
scientific computing. The tool can generate both serial and parallel code for a general
elliptic PDE problem according to the user specified input in a fashion of less time
consuming with user-friendly interface. With some simple modifications (for example,
adding a node to the tree structure), it can be extended to solve different kind of
problems. Current work that we have done is attempting to solve linear elliptic partial
differential equations using the stationary methods. Currently we are working on the non-
stationary methods such as Conjugate Gradient method and GMRES and they will be
added in the next release. This tool solves elliptic partial differential equations on a
rectilinear domain. This can be extended to linear two-dimensional first order systems of
elliptic partial-differential equations (PDE’s) and associated boundary conditions over a
finite union of rectangles. Details can be found in [8]. Scientific Computing Tool
currently can generate parallel code that uses data parallel mechanism. With the cluster
system, it would be more efficient that machine parallelism could be introduced with the
consideration of load balancing over all nodes of whole cluster system. In order to have
full beneficiary of POOMA, the tool should be able to support parallel computation over
a fully distributed cluster system.

References

1. Thomson, L.F. Introduction to Parallel Algorithms and Architectures: Arrays,
Trees and Hypercubes. San Mateo, California: Morgan Kaufmann, 1992.

2. Grewal, B.S. Higher Engineering Mathematics, Khanna Publications, 19xx.
3. Duchateau, P., and ZachMann, D.W., Partial Differential Equations Schaum’s

outline series in mathematics, Publisher, 19xx.
4. Naughton, P. and Schildt, H., The Complete Reference Java 3rd. edition, Tata

McGraw-Hill, 19xx.
5. Norton, C.D., Thesis work on Object oriented paradigms in scientific computing,

Department of Computer Science Rensselaer Polytechnic Institute, Troy, New
York, 12180-3590, USA.

6. Oldham, J.D., POOMA A C++ Toolkit for High Performance Parallel Scientific
Computing, Codesourcery, LLC. March 1st. 2001.

7. Williams, T.J., Reynders, J.W., Humphrey, W.F., and Cummings, J.C., POOMA
User Guide, Parallel Object-Oriented Methods and Applications, Los Alamos
National Laboratory, 1999.

8. HOHN.M. On the Solution of Mixed Boundary Value Problems in Elasticity. Ph.D.
thesis, Department of Mathematics, University of Utah, SaltLake City, UT,
USA,Dec.2001.

9. Educational applications of Mathematica (http://www.xtec.es/~fgomez/apmath-
e.html)

Acknowledgements

We would like to thank Dr.Gregg Stubbendieck for the valuable suggestions in designing
the interface. We would like to thank the Beowulf Cluster group at SDSM&T for their
support. We would like to thank all the individuals who are directly or indirectly involved
in the successful completion of this project.

