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ABSTRACT 
 
The success of high performance computing in modeling scientific and engineering 
applications motivates the development of ambitious applications. An efficient solution 
for solving scientific problems on a cluster has been and is still of high interest. In this 
paper, we present the Scientific Computing Tool.  

 
The Scientific Computing Tool provides a Graphical User Interface (GUI) in which the 
user can enter geometric shapes in one, two or three dimensions, and information about 
the shapes. The tool will then take the necessary parameters for solving the linear elliptic 
partial differential equations on a rectilinear domain. The program will generate a 
sequential code or parallel code as requested by the user for a finite difference 
approximation defined on the domain using the iterative methods Jacobi, Gauss Seidel, 
Successive Over Relaxation methods. The serial code is implemented in C. The parallel 
code is implemented in C++ using POOMA library.  This tool allows the user to compile, 
run and generate a graph in the GUI using Gnuplot. 
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Introduction 
 
The computer science department at SD School of Mines and Technology started a 
Beowulf Cluster Project (Cluster Computing and Visualization) in spring 2002. This 
project aims at using “off-the-shelf” components to build a parallel computer to perform 
the numerous complex operations required for visualization of large data sets. We 
decided to come up with a tool that simplifies the code development in Scientific 
Computing. The purpose of Scientific Computing Tool is to create a Graphical User 
Interface in which you can enter in geometric shapes in one, two or three dimensions. 
The tool then will take the necessary parameters for solving a linear elliptic partial 
differential equation on a rectilinear domain and generate code for a finite difference 
approximation defined on the domain using the stationary iterative methods Jacobi, 
Gauss Seidel and Successive Over Relaxation methods. Since domain decomposition 
methods are based on partitioning of the domain of the physical problem and each sub 
domain can be handled independently, this tool is very effective on a cluster.  

 
This tool streamlines the development of scientific codes. This includes the process of 
modeling, discretization, solving and parallelization of problems from various fields of 
applications[5]. The various fields of Scientific Computing include weather prediction, 
Seismic data processing, astrophysics, Nuclear Engineering and Image processing. This 
tool is readily accessible to scientific application developers whose background does not 
include computer science. This tool leverages existing sophisticated codes like POOMA 
to achieve this. The Parallel Object Oriented Methods and Applications (POOMA) 
Toolkit is an open-source software for writing high performance Scientific Computing 
Programs on parallel computers, which was originally developed by scientists at 
Advanced Computing Laboratory at Los Alamos National Laboratory (LANL), and is 
maintained by CodeSourcery, LLC (http://www.codesourcery.com) [8,9]. Also, a 
Cheetah messaging library provided by LANL, an underlying messaging library 
Messaging Passing Interface (MPI) from Argonne National Laboratory Computation 
Institute, as well as MM Shared Memory Library are coupled with POOMA, in order to 
take the advantages of high performance parallel computing of POOMA over multiple 
processors or cluster system 

 
The scientific computing tool provides an easy-to-use interface and is a far better means 
of communication than text-based alternatives. Extensive use of visual navigation 
features such as buttons, menus and trees and intuitive manipulation of data will make 
this tool convenient for the scientific computing world. The tools needed to build and test 
Java programs are available without charge. Sun makes the Java Development Kit (JDK) 
available over the Internet (at http://www.javasoft.com/), where any individual can 
download it. The JDK--which includes the Java compiler and interpreter, among other 
tools is undoubtedly very simple to use. 



 

Description of the problem 
 
Partial Differential Equations describe the modeling of physical processes taking place in 
our surroundings. A Partial Differential Equation (PDE) is a type of equation in which 
the unknown can represent some of the things like the temperature, or the shape of the 
wave, or stress in a bent piece of metal. A PDE is an equation involving one or more 
partial derivatives of an unknown function of multiple variables [3].  
 
A general second-order partial differential equation looks like this. 
 

 
where a, b, c, d, e, f and g can be functions of both the independent variables x and y and 
the dependent variable u. This equation is said to be elliptic when 042 <− acb , 
parabolic when 042 =− acb  and hyperbolic when .042 >− acb  Elliptic partial 
differential equations arise usually from equilibrium or steady-state problems and their 
solutions [3]. 
 
The goal is to solve elliptic partial differential equation  

in the domain ),(),( 1010 yyxxx=Ω , subject to the Dirchlet boundary condition u=Gi   

on Ω∂ . This problem can be solved using the method of finite differences. The method of 
finite differences is easy to implement and it gives good results of boundary value 
problems. In this method, the derivatives appearing in the equation and the boundary 
conditions are replaced by their finite difference approximations [2]. Then the given 
equation is changed to a difference equation, which is solved by iterative procedures. By 
replacing the given derivatives with their finite difference approximations we get 
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where h is the step size between discrete points and is equal to 
N
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 The above equation can be solved by dividing Ω into NxM cells and applying central 
difference formula at each of  (N – 1) x (M – 1) interior grid points.  
 
 

 
Figure 1 

 
 
For the grid point in the ith row and jth column of the grid gives the formula  
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Equation 1 
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Equation1 can be solved using stationary methods Jacobi, Gauss-Seidel, Successive Over 
Relaxation and non-stationary methods like Conjugate Gradient Method and GMRES. 
 



 

Existing Approach 
 
Grid based problems are common in scientific computing. An efficient solution to solve 
the partial differential equations has been and is still of interest. The following are the 
tools that are commonly used by scientific computing world. 
 
Matlab: Matlab is a high level interpreted programming language generally used for high 
performance numerical computation and visualization The Matlab PDE solver, pdepe, 
solves initial-boundary value problems for systems of parabolic and elliptic PDEs in the 
one space variable x and time t. 
 
Mathematica: Mathematica[9], software developed by the company Wolfram Research, 
is a numeric and symbolic calculation system that incorporates an excellent programming 
language and the capacity of integrating calculations, graphics and text, in oneself 
document electronic, called notebook. 
 
Maple: The Maple system is an advanced, mathematical problem solving and 
programming environment.  
 
PETSc: PETSc is a software library that provides data structures and routines for the 
solving scientific applications modeled by partial differential equations on parallel or 
serial computers. To provide portability across networks of workstations PETSC uses 
customized message-passing system. 
 
POOMA: POOMA (Parallel Object-Oriented Methods and Applications) is a collection 
of templated C++ classes for writing parallel PDE solvers using finite-difference and 
particle methods. It provides a variety of tools in supporting scientific computing with 
features of [6],  

• Containers and other abstractions for scientific computation, 
• Support for a variety of computation modes, such as data parallel, stencil-based 

computations, and lazy evaluation, as well as parallel and distributed computation 
programs writing. 

• Robots of all inter process communication for parallel and distributed routines, 
out of order execution, and loop rearrangement for efficient program execution. 

With POOMA high-level abstractions, the programs written in POOMA are much shorter 
than conventional FORTRAN or C programs. The code is also easier to debug. The 
toolkit is compatible with most of C++ compliers. 
 
Limitations in existing software 
 

Solving scientific applications generally involves a great deal of arithmetic. One of the 
major problems faced by the programmer is to convert the mathematical concept into 
efficient algorithm developed in some programming language. Though the existing 
software has come up with a programming environment, still the user is expected to write 
his code for a specified input. This becomes an uphill task to write a parallel code, which 
requires a different algorithm. 



 

Scientific Computing Tool 
 
This tool generates code a serial code and parallel code for a user specified input to solve 
a general elliptic partial differential equations. The serial code is implemented in C. The 
parallel code is implemented in C++ using POOMA library. 
 
 The user interface provides a similar look and feel to a GUI based program and is 
implemented using Java Swing for increased portability to other operating systems. To 
the greatest degree possible, the layout and functionality of menus, dialog boxes, and 
toolbars follows the standard GUI guidelines for Software Design. 
 
The following are the important classes used in our system for generating the code to 
solve elliptic partial differential equations. 
 
Start: This is the starting point of the tool. This brings up the splash screen and provides 
the user the details of the system he is running and it directs to the pdetool.  
 
Pdetool: This is the heart of the tool. This class represents the view of the hierarchical 
data of the PDE.  
 

 
Figure 2 

 
As the preceding figure shows, the nodes of the tree contain Elliptic, Parabolic, 
Hyperbolic, and elliptic node containing the children one dimensional, two dimensional, 
three-dimensional. When the user right clicks one dimensional, two dimensional, three-
dimensional the corresponding sub nodes containing line, rectangle, cube, are obtained. 
When the user clicks the node line, rectangle, ellipse, circle and cube the corresponding 
object is created in an internal frame. The internal frame can be resized and moved 
through out the window.  When the user clicks line/rectangle/cube, a wizard is created 
that takes in the necessary inputs for handling the PDE problem. This is handled in the 
host class. 
 



 

Host: This contains a handle to an array of panels each representing one-step wizard 
process. This also captures the input given by the user.  
 
Frame: Based on the input entered by the user this class writes them in a syntactically 
correct format and calls the corresponding solver to solve the particular problem. 
 
The following is the class diagram of the scientific computing tool. 

 
 

 
Figure 3 

 
 
 
 



 

A parallel sample code generated by use of scientific computing tool for solving a 
variable Poisson equation with variable coefficients and boundary conditions is shown 
below. 
 
#include "Pooma/Arrays.h" 
#include <iostream> 
#include <fstream.h> 
 
#define Nx 10 
#define Ny 10 
#define stride 2 
#define Iteration 200 
 
#define hsquare ((double)Nx-1.0)/((double)(Nx*Nx)) 
#define ksquare ((double)Ny-1.0)/((double)(Ny*Ny)) 
 
//Define the coefficients a, b, and c. 
inline double A(double, double); 
inline double B(double, double); 
inline double C(double, double); 
 
inline double A(double x, double y) {return x+y;} 
inline double B(double x, double y) {return x+y;} 
inline double C(double x, double y) {return x+y;} 
 
//Boundary conditions to be applied. 
inline double g1(double,double); 
inline double g2(double,double); 
inline double g3(double,double); 
inline double g4(double,double); 
 
inline double g1(double x,double y){ return x+y;} 
inline double g2(double x,double y){ return x+y;} 
inline double g3(double x,double y){ return x+y;} 
inline double g4(double x,double y){ return x+y;} 
 
// Apply a Jacobi iteration on the given domain. 
void ApplyJacobi( 
    const Array<2>  & V,  // the domain to be solved. 
    const Array<2>  & a,  // the domain to be solved. 
    const Array<2>  & b,  // the domain to be solved. 
    const Array<2>  & c,  // the domain to be solved. 
    const Range<1>  & I,  // x axis subscript 
    const Range<1>  & J   // y axis subscript 
) 
{ 
  V(I,J) = (1.0/(2.0*(ksquare*a(I,J) + hsquare*b(I,J))) 
        )* 
        ( (ksquare*a(I,J))*(V(I+1,J) + V(I-1,J)) 
    +     (hsquare*b(I,J))*(V(I,J+1) + V(I,J-1)) 
    -     c(I,J)*hsquare*ksquare 
        ); 
} 
 
//Calculate the sum of squares errors in a 2D Array. 
//No modification needs below. 
template<class ValueType, class EngineTag> 
ValueType sum_sqr (const Array<2, ValueType, EngineTag> 
&A) 
{ 
  ValueType sum = 0.0; 
 
  int begin_0 = A.first(0), end_0  = A.last(0), begin_1 = 
A.first(1), 
      end_1  = A.last(1); 
 
  // Must block before scalar loop. 
  Pooma::blockAndEvaluate(); 

 
int 
main( int argc,      // argument count 
      char *argv[]   // argument list 
) 
{ 
  ofstream osf; 
 
  // Initialize Pooma. 
  Pooma::initialize(argc, argv); 
 
  // The array to be solved, zero out. 
 
  Array<2> V(Nx, Ny); 
  V = 0.0; 
 
  // The right hand side function of the equation f(x,y): 
  //Initialization 
  Array<2> a(Nx, Ny); 
  a = 0.0; 
 
  Array<2> b(Nx, Ny); 
  b = 0.0; 
 
  Array<2> c(Nx, Ny); 
  c = 0.0; 
 
  // Must block before scalar code. 
  Pooma::blockAndEvaluate(); 
 
  //Define f(x,y) 
  for(int x = 0; x < Nx; ++x) 
   for(int y = 0; y < Ny; ++y){ 
      a(x,y) = A(1,0); //coefficient of uxx 
      b(x,y) = B(1,0); //coefficient of uyy 
      c(x,y) = C(0,0); //right hand side function 
  } 
 
  c(Nx/2,Ny/2) = (double) -Nx/2.0; 
 
  for(int x = 0; x < Nx; ++x) { 
    V(x,0)    = g1(0,0); 
    V(x,Ny-1) = g2(0,0); 
  } 
 
  for(int y = 0; y < Ny; ++y){ 
    V(0,y)    = g3(0,0); 
    V(Nx-1,y) = g4(0,0); 
  } 
 
  // The interior domain, now with number of stride. 
  // No modification is needed below at this time. 
  Range<1> I(1, Nx-(stride+1), stride), J(1, Ny-(stride+1), stride); 
 
  // Iterate till converged, or maximum Iteration steps. 
  double SSErr = 0.01; // anything greater than threshold 
  int iteration; 
  for (iteration=0; iteration < Iteration && SSErr > 1e-6; 
++iteration) 
  { 
    //Red block 
    ApplyJacobi (V, a, b, c, I,   J); 
    ApplyJacobi (V, a, b, c, I+1, J+1); 
    //Black block 



 

 
  for (int x = begin_0;  x <= end_0; ++x) 
  { 

 
     for (int y = begin_1; y <= end_1; ++y) 
     { 
        ValueType value = A.read(x, y); 
        sum += value * value; 
     } 
  } 
 
  return sum; 
} 

 
 

    ApplyJacobi (V,a, b, c, I+1, J); 
    ApplyJacobi (V,a, b, c, I,   J+1); 
    //Compute residual. 
    SSErr = sum_sqr ( (V(I+1,J) + V(I-1,J))*ksquare*a(I,J) 
          +  (V(I,J+1) + V(I,J-1))*hsquare*b(I,J) 
          -  (c(I,J)*hsquare*ksquare 
          +  2.0*(ksquare*a(I,J) + hsquare*b(I,J))*V(I,J) 
             )); 
  } 
 
  // Print out the result. 
  std::cout << "Iterations = " << iteration << std::endl; 
  std::cout << "Residual = "   << SSErr  << std::endl; 
  std::cout << "Solved domain size in " << Nx << " x " << Ny << 
"." << std::endl; 
  //Write the result to file. 
  osf.open ("result.txt"); 
  osf << V << std::endl; 
  osf.close (); 
 
  // Clean up and report success. 
  Pooma::finalize(); 
  return 0; 
} 

 
 
The entire code generation was divided into three steps. The flow diagram shown below 
describes how the code generation was handled effectively within the scientific 
computing tool. 
 

   (Step I) 
Define program prototype & header files 

 

 (Step II) 
Translate the user inputs to a syntactically 
correct way that can be understood by the 
compiler 

 

(Step III) 
Create source code using a template that 
handles the above inputs. 

 



 

Results and Discussion 
 
The goal of this project is to come up with a small prototype in building a generic tool 
that is suitable for scientific computing on a cluster. As the first step, we tested the tool 
for the linear elliptic partial differential equations. The generated code was compiled and 
run on the cluster.  In the case of parallel code execution, a cluster with 4 nodes, running 
Pentium III 440 MHz processor and 256 MB RAM was used for testing performance. 
10/100 Base-T Faster Ethernet card is used for communications between nodes. 
 
Figure 4 illustrates the performance of the three solvers of using different algorithms for 
solving a Poisson equation on a rectangular grid with sequential code implemented in C. 
 
A simple method for solving the above equation is to iteratively apply the equation until 
there is little change in u. This is the Jacobi iterative method for solving the equation. A 
modification of this process, called the Gauss-Seidel method, may find the solution in 
fewer iterations. As described in Introduction to Parallel Algorithms and Architectures, 
page 98, this method suggests that we can calculate the new values of all the even-parity 
points using equation 1; then calculate the new values for all of the odd-parity points 
using the values just calculated for the even parity points[1]. The parity of the point ( i/N 
, j/N ) is defined to be even if i + j is even and odd if i + j is odd. This will cause the 
method to converge in fewer iterations, but may not be beneficial for small matrices since 
this requires two communications per iteration instead of one for Jacobi’s method. Gauss-
Seidel iteration method can be further be improved by changing the convergence rate 
using the Successive over relaxation (SOR) method. Application of SOR to the above set 
of equation gives 
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Comparison of Performance of 3 Stationary Iterative Methods 
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Figure 4. Comparison of performance of three algorithms implemented 
in the serial code. 



 

As a comparison, Figure 5 shows the performance of execution of a parallel code by 
applying Jacobi Iteration Relaxation method to solve the same problem over 4 nodes 
cluster system. One may wonder how this parallel code could be so efficient, it might 
have been too good to be true. However, with careful examination of the sample parallel 
code, one can observe that the implementation of Jacobi Iteration Relaxation algorithm 
has taken the benefits of data parallel expression on POOMA. As it has been show in the 
sample code, both parameters and variable (unknown) were defined as Array objects. The 
initialization of these array objects was done with single statement, but none for loop 
presents. The Range objects shown in the sample code (one dimension in this case), 
benefit the representation of index sequences with non-unit strides, which provides an 
efficient way to define non-adjacent array elements in parallel fashion. The Red/Black 
block operations within iteration loop further improve the parallel performance on 
computing, it reduces the amount of memory that a program requires [9].  
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Another important point should be addressed here regarding POOMA highly abstractive 
objects is that it uses a type of object called Engine, a key to the POOMA high 
performance [7]. An engine is an abstractive object implemented in POOMA, which 
performs the low-level value storage, computation, and element wise access for a 
container [6]. The function sum_sqr () shown in the sample code takes the advantages of 
Engines. It is completely different form other languages that use whole-array operations, 
which usually requires temporary array for holding data. In fact, during the computing 
process, the arrays do not store data in POOMA, but act as handles on an engine. The 
engine knows how to evaluate and return values on the given sets of indices 

Figure 5. Comparison of performance of parallel  versus sequential 
code. 



 

corresponding the predefined arrays. That is, engine can reference data storage directly, 
and translate a set of indices into a value by looking up the value based on the indices in 
memory.   
 
An interesting observation from Figure 5 is the overhead of interprocess communication 
among the nodes of cluster for parallel code execution. Initially, the grid size is relatively 
small, such that sequential code execution is much faster than parallel code, because the 
communication overhead can’t be eliminated for the parallel code. In fact, for a small 
grid size, the parallel code is not the first choice for efficiency concern. 
 
 
Conclusions & Future Enhancements 
 
In this project, it is aim to develop a tool that simplifies the code development in 
scientific computing. The tool can generate both serial and parallel code for a general 
elliptic PDE problem according to the user specified input in a fashion of less time 
consuming with user-friendly interface. With some simple modifications (for example, 
adding a node to the tree structure), it can be extended to solve different kind of 
problems. Current work that we have done is attempting to solve linear elliptic partial 
differential equations using the stationary methods. Currently we are working on the non-
stationary methods such as Conjugate Gradient method and GMRES and they will be 
added in the next release. This tool solves elliptic partial differential equations on a 
rectilinear domain. This can be extended to linear two-dimensional first order systems of 
elliptic partial-differential equations (PDE’s) and associated boundary conditions over a 
finite union of rectangles. Details can be found in [8]. Scientific Computing Tool 
currently can generate parallel code that uses data parallel mechanism. With the cluster 
system, it would be more efficient that machine parallelism could be introduced with the 
consideration of load balancing over all nodes of whole cluster system. In order to have 
full beneficiary of POOMA, the tool should be able to support parallel computation over 
a fully distributed cluster system. 
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