
Experience Using SQL Server CE to Support Mobile
Collection and Analysis of Glucose Data

Rajendra Penugonda

Department of Computer & Information Sciences
Minnesota State University, Mankato

rajendra.penugonda@mnsu.edu

Steven Case
Department of Computer & Information Sciences

Minnesota State University, Mankato
steven.case@mnsu.edu

Abstract

Providing access to data in a timely manner is an important factor in the workplace. This
is particularly true in the medical community. New methods are being developed to
make the best use of the time available for a specific task. The use of clipboards, paper
and pencil is getting obsolete for keeping track of patient information. Consequently,
maintaining a consistency of data for remote use is increasingly becoming a necessity.
This is readily apparent in the need for accurate monitoring of medical data related to
acute medical care.

The authors have been involved in the development of a mobile application for the
collection and analysis of glucose data relative to the treatment of diabetic patients. The
system implements the Staged Diabetes Management system developed by the
International Diabetes Center. The mobile application is supported on the Pocket PC
platform and communicates to a back-end server using a wireless LAN – although the
system is intended to operate seamlessly with any TCP/IP network.

In order to reduce the challenges associated with maintaining and accessing data in
remote servers, SQL Server Windows 2000 CE Edition (SQL Server CE) was selected.
SQL Server CE provides the flexibility in development along with the database
performance expected for the mobile system. SQL Server CE provides the capabilities
for efficient database management in mobile applications on wireless devices.

The mobile application is integrated with back-end server software using IIS and SQL
Server 2000. The usage of IIS server provides different methods for authentication,
authorization and encryption. This architecture provides the capability for data
synchronization through merge replication along with continuous and efficient access to
data to data anytime the user has access to the wireless network.

This paper will discuss the developed Stage Diabetes Management system. The paper
will elaborate on the benefits experienced using SQL Server CE and the Pocket PC
development tools in the development of this mobile application.

Introduction

As mobile computing and wireless technology have been gaining popularity in the past
few years, the healthcare industry has been adopting various tools to provide mobile
access to clinical and administrative data [5]. Healthcare personnel find their schedules to
be busier and more stressful than in the past [7]. While treating patients, it is cumbersome
to carry a clipboard with the details of the patient, the different lab test reports and
(possibly) reference books for guidance. It is also not feasible for these personnel to be
limited to a specific room and computer where they can access and update information
about the patient. A time lapse between the actual medical process and its documentation
may also lead to the inadvertent omission of an important detail.

Various medical device manufacturers are designing and developing thermometers, heart
monitors, glucose meters and other medical devices to report results to a central
repository as soon as a measurement is taken [5]. In order to eliminate the inefficiencies
resulting in the gaps in location and time, wireless applications are being developed with
a high level of security, scalability and reliable access to data. These applications focus
on specific processes related to clinical and administrative tasks. By implementing these
applications, companies have claimed to gain an increase in revenue, improvement in
productivity, savings in costs and a high level of customer satisfaction. The different
applications benefiting from these improvements can be broadly classified into point-of-
care applications, clinical trial data collection, disease state management and
pharmaceutical sales force automation.

Point-of-care applications allow the physicians to spend more time with the patient, give
them timely access to critical data and help to reduce errors. Specifically, these
applications can include tracking of patient referrals, enabling patient records to be
viewed on a mobile device and accessing medical references stored in a central database
[8]. A cumbersome paper-based system can result in problems analyzing results after data
compilation and cause undesirable inconsistencies. The clinical trial data collection
applications can capture data at the point of origin, track the data over a period of time
and monitor symptoms by collecting and storing patient information such as blood sugar
levels, blood pressure and cholesterol using a mobile device. The disease state
management applications can retrieve information about a patient’s medical condition,
detect if a specific drug has any adverse side effects when combined with current
medications and provide notifications to the patient to take prescribed medications. The
pharmaceutical sales force automation applications are intended for sales representatives
to track a specific medication’s prospects, the inventory level of an existing medicine and
access to personal information management software [1].

Our Application

The mobile application that we are developing is a software implementation of the Staged
Diabetes Management System designed by the International Diabetes Center [3]. This
system provides- a quick guide to detection and treatment of diabetes and has been

developed in accordance with the current standards of diabetes management. The guide
provides essential information for starting and adjusting diabetes therapies. In our
application, we are implementing only a portion of this guide to demonstrate the use of
different tools and software we are using in the development process. This paper will
provide an overview of the features provided by SQL Server CE (SSCE) and how it can
be used in an application developed with eMbedded Visual Tools.

SSCE Environment

The SSCE platform offers the features of a relational database management system and
its developmental model is similar to the SQL Server family. It supports the Structure
Query Language (SQL) within applications developed for mobile devices. It also offers
flexibility in data access whether it is connected to the remote SQL Server 2000 machine
or it is in a disconnected mode. SSCE can be used in a combination of three different
environments as shown in Figure 1.

Figure 1: SSCE Environment [6]

The development environment includes a computer having either Microsoft Visual
Studion 6.0, Microsoft Visual Studio .NET or Microsoft eMbedded Visual Tools installed
[6]. The Microsoft eMbedded Visual Tools installation must include one of the software
development kits (SDK) installed, namely, Handheld PC 2000 SDK or Pocket PC SDK
or Windows Powered Pocket PC 2002 SDK. In our application we are using eMbedded
Visual Basic, a component of Microsoft eMbedded Visual Tools for development.
Microsoft eMbedded Visual Basic (eVB) is used for programming applications and uses
SQL syntax that is specific to SSCE.

The SSCE environment provides support for two object models to represent the relational
database. The Microsoft ActiveX Data Objects for Windows CE (ADOCE) and
Microsoft ActiveX Data Objects Extensions for Data Definition language and Security
(ADOXCE) are the two supported object models with both providing support for access
to the underlying database and the database schema. The different operations supported
by the database object modules include the addition of records to the tables, retrieval of
records, creation of databases, tables and indexes. The ADOXCE object model is used

from eVB and interacts with a generic OLEDB Application Programming Interface,
which accesses SSCE through an OLEDB provider [4]. The OLE DB provider is the
lowest level interface for accessing data in SSCE.

The ADOCE library is used to manipulate the data within the database. The ADOXCE
library extends ADOCE and is used to create databases (known as catalogs), tables, and
indexes. ADOXCE also provides interfaces to manipulate the schema objects. A more
detailed view of the development environment can be seen in Figure 2.

Figure 2: Development Environment [6]

The client environment consists of the device on which the application will be deployed.
The device connects to the server directly through a network connection. Presumably, in
order to support greater mobility, the network connection will be a wireless connection to
an always-on wireless network. This enables access to current data at any time some
information is needed from the database. Due to the mobility of the application and the
potential for data to be locally stored on the mobile device, synchronization and conflict
resolution is an ongoing process in this type of connection. Another type of connection
can be made using Microsoft ActiveSync. In this mode the mobile device retains a local
subset of the remote database. The mobile device will have to be docked with a desktop
platform to perform synchronization of the databases – remote and local.

The server environment can consist of a single or multiple servers with at least one
instance of IIS and one instance of SQL Server running within the system. Whenever a
remote data access occurs, the communication to SQL Server occurs through the IIS.

The different components in the client and server environments and their relationships are
shown in Figure 3. The client environment has a SSCE database engine that is
responsible for managing the SSCE data on the Windows CE device. It keeps track of the
database transactions and maintains some information in the database records about the
tracking. The SSCE client agent in this environment is primarily responsible for
connectivity and implements objects that can establish connections to the SQL Server
through applications. Any requests made by the client agent are sent to the SSCE server
agent through HTTP. The server agent communicates with the SQL Server and sends the
results back to the client agent.

Figure 3: Client and Server Environment [6]

SSCE Installation

There are two options to configure a SSCE environment – single and multi-server
environments. As the name indicates, a single-server environment will have the IIS and
the SQL Server on the same computer. In the multi-server environment, the IIS and SQL
Server are on different computers. The multi-server environment is more common in the
corporate applications and hence our application is based on a multi-server environment.

In our application, the development tools, IIS and SQL Server are installed on separate
computers. The development machine has eMbedded Visual Tools 3.0 and we are using
eMbedded Visual Basic 3.0. This machine also has ActiveSync 3.5 and SSCE client
development tools installed on it. The machine with IIS configuration has the SSCE
server tools installed on it. These tools are needed in order to facilitate remote data access
and replication. There is no need for any specific installation of any SSCE tools on the
machine running SQL Server 2000.

The Windows CE based device also needs to have an installation of SSCE. This can be
done either by an automated process with eMbedded Visual Basic or by a manual
download of SSCE. We have preferred the use of eMbedded Visual Basic for the
installation. In order to include SSCE in our application, we added Microsoft CE SQL
Server Control 2.0, Microsoft CE ADO Control 3.1 and Microsoft CE ADO Ext. 3.1 for
DDL in the eMbedded Visual Basic Project References [4].

Features

The major advantage offered to application developers by SSCE is the compact footprint.
The SSCE database engine occupies 700k for Intel StrongARM x86 architecture CPUs
and approximately 1.2MB to 1.6MB of disk space depending on the other processors on
the target device. Though SSCE is built on the same model as SQL Server 2000, it does
not include all the features provided in SQL Server 2000. This made it possible to keep
SSCE small by eliminating some SQL Server 2000 functionalities that are not needed for
the Windows CE environment. SSCE supports only Unicode character types and doesn’t
support some data types such as smalldatetime because it is converted to the datetime
data type [6].

For mobile professionals, SSCE offers the advantage of installing portions of SQL Server
2000 database on the Pocket PC device. Remote Data Access (RDA) in SSCE provides
features that enable an application to access data from a remote database and then store
the data in a local database. Using RDA, data can be read from and modified on a remote
server. SSCE also provides methods for tracking the changes made to the database
whenever the records are being updated to the remote database. This is made feasible
using the PULL and PUSH methods, which can be used by an application to access a
remote database.

Figure 4: Database Schema for the application

Figure 4 shows the database schema used for our application. The foreign key
relationships are not carried over from the SQL Server 2000 database but have to be
created in the application using the objects provided by SSCE.

The PULL method is used to extract data from the remote SQL Server database and store
it in a local SSCE database. Some of the parameters that are needed to use this method
are the local SSCE table name that the will store the records pulled from the remote SQL
Server and the SQL statement that returns the rows. The OLE DB connection string used
when connecting to the SQL Server Database is also required here. The PULL method
also gives an option of whether to track the changes made to the pulled table and then the
name of a table that will record the errors, if any, when the data is sent back to the server.

The PUSH method is called to transmit the changes to the pulled tracked SSCE table
back to the originating SQL Server table. The parameters needed for the PUSH method
are the name of the pulled SSCE table with updated records and the OLE DB connection
string. Another option that is provided for the PUSH method is whether the updated
records need to be sent back to the SQL Server individually or batched together.

RDA provides a mechanism to resolve conflicts during a push transaction. When the
PULL method is invoked, SSCE provides an option of specifying an error table. SSCE
supports only row-level tracking so a conflict arises whenever a row cannot be pushed to
the SQL Server. The conflicting row is returned to the error table and is deleted from the
local database. In the case of a batched push transaction; all the rows need to be
successfully processed. A single conflicting row will result in the entire transaction’s
failure and in this case the local database is left unchanged.

SSCE allows application programmers to use the same syntax for SQL queries as SQL
Server. This includes the CREATE, ALTER, UPDATE, INSERT, DELETE and DROP
statements. SSCE also supports the GROUP BY, HAVING, ORDER BY and join
clauses. Unlike SQL Server, SSCE does not support a query which depends on the results
of a nested query in a FROM clause. These features allow the programmer to reuse the
existing code for SQL Server and reduce the learning curve for a new skill set. SSCE also
supports transactions and declarative referential integrity constraints. It also provides an
option of encrypting the database with 128-bit encryption.

Replication in SSCE is based on the SQL Server merge replication. Replication can be
used over local or wide area networks and the replication communication protocol is
designed for wireless transports. This protocol uses compression to reduce the size of
data being transmitted. It also supports the use of encryption to secure the data during
transmission. The merge replication for SSCE allows data to be updated autonomously
on portable devices and the server. SSCE synchronizes with SQL Server through a HTTP
connection to SQL Server Publisher via IIS, which also provides authentication and
authorization services. The two factors that need to be considered for configuring
replication in SSCE are performance and security. Factors that affect performance
include the number of devices being supported, the frequency of synchronization with the
server and the connection bandwidth. Common ways of configuring SSCE replication are
single server, two servers and multiple IIS systems and SQL Server republishing
topologies.

Analysis and Future Work

In our application, we are not collecting the glucose data from a device but we are using
the data that has been updated on the server. This means that the glucose readings are
obtained when the records are pulled from the server database table. The SDM system
has some algorithms and guidelines for doctors, nurses and dieticians. Our application
implements some of those guidelines for the screening, detection and treatment of
diabetes. The application guides the user in making decisions for screening patients
through appropriate screens. Some of the screenshots of the application are shown in
Figures 5-7. The user has not been given permission to modify any data that is being
pulled from the server. The reason behind this approach is that the data in server is
periodically updated with various test readings for the patient. The device can connect to
the server seamlessly to ensure that the most current data is available for the user. By
referring to the patient’s medical record, the user of this application can follow the
different flowcharts specified in the SDM system. One obvious extension to this work,
which is planned for the future, is to create a mobile application that integrates the
functionality of the glucose meters to get readings of the patient’s tests.

Another planned enhancement is to extend this application to include some data mining
concepts. The SDM system is based on very limited test readings for detecting and
treating diabetes. A better way of dealing with this shortcoming is to monitor the blood
sugar more frequently and thereby adjusting the diet intake. This might also require a

change in the physical activity and forms of exercise. If the application can provide a
feature of analyzing the recent test results and provide real-time management of medicine
intake or diet improvements, it will be more beneficial for the patient. This mining of
data in real time will improve the management of diabetes. There will be a need for more
sophisticated glucose meters for this approach and FDA approval too. We will continue
to extend the application to include more functions that will enable an extensive usage of
features provided by SSCE.

Figure 5: Login Screen in the application

Figure 6: Screen for Selecting the type of Diabetes

Figure 7: Screen showing the patient information extracted from the database

References

1. Air2Web, Inc. (2002). The Possibilities of Wireless Healthcare. Retrieved from
http://www.air2web.com.

2. Article. (2002). Healthcare System goes wireless. Communication News. pp-40.
3. Etzwiler, Donnell. et al. (1999). Staged Diabetes Management Detection and

Treatment Quick Guide. International Diabetes Center, Institute for Research and
Education, Minneapolis.

4. Grattan, Nick. (2002). Pocket PC, Handheld PC Developer’s Guide With
Microsoft eMbedded Visual Basic. Prentice Hall.

5. Healthcare Informatics. (1999). Wow! Wireless Works!. Retrieved from
http://www.healthcare-informatics.com/issues/1999/10_99.

6. Microsoft Corporation. (2002). Microsoft SQL Server 2000 Windows CE Edition
Books Online. Retrieved from
http://www.microsoft.com/sql/ce/techinfo/20bol.asp.

7. Turisco, F. & Steinichen, P. (2002). Understanding the Wireless Technology and
Mobile Computing in Healthcare. Proceedings of the 2002 Annual HIMSS
Conference and Exhibition.

8. Wade, J. & Stevens, T. (2002). Web Access to Live Patient Information: Instant
Knowledge, Better Care. Proceedings of the 2002 Annual HIMSS Conference and
Exhibition.

