
A Development Environment for Formal Languages

Thomas E. O’Neil
Computer Science Department

University of North Dakota
oneil@cs.und.edu

Abstract
Formal languages and Automata provide models for study of the fundamental principles
and properties of computers and computer programs. The models, by definition, are
universal and abstract, and their relation to practical computing is not immediately
obvious. The simplicity and relevance of these models become clearer when they are
implemented as computational objects in some programming language. This paper
describes a collection of Java objects that implement formal languages, automata, and
grammars in a hands-on development environment. The central classes, called
FormalLanguage and LanguageLab, provide a user interface for creation, viewing, and
manipulation of languages, grammars, and automata.

A FormalLanguage object is a possibly infinite set of strings over some finite alphabet of
symbols. The Alphabet class is an ordered set of characters. An instance of a
FormalLanguage can have a Generator, which has methods that produce an ordered list of
the strings in the language, and an Acceptor, which has a method that takes strings as
input and determines whether they belong to the language. The Grammar class is an
extension of the Generator class, and the Automaton class is an extension of the Acceptor
class. Subclasses of Grammar and Automaton can be defined to implement regular and
context-free grammars, finite automata, push-down automata, and Turing machines. The
LanguageLab contains facilities for creating, testing, and modifying grammars and
automata.

The LanguageLab has methods for converting generators to acceptors and vice-versa.
The challenge of implementing these methods and of creating generators and acceptors
for various languages quickly raises the major issues in computability and decidability.
This collection of Java objects provides a framework and a robust set of tools for a hands-
on exploration of the theory of computing.

Introduction
One of the primary goals of any undergraduate computer science program is to make
students aware that there are severe limitations on computational systems. The world of
computing would reap huge benefits if general-purpose programs could be written to
analyze other programs and determine such properties such as program equivalence,
correctness, and reliability. In courses on the theory of computation, we try to
demonstrate that such programs do not exist. This endeavor requires a simple, unified
model for computational problems and the programs that are written to solve them.
There are several models that can be employed, but taking the approach of formal
languages, we represent all programs and computational problems as possibly infinite
sets of strings using some fixed alphabet of symbols. This model, by definition, is
universal and abstract, and its relation to practical computing may not be immediately
obvious. The simplicity and relevance of the model, however, becomes clearer when it is
implemented in a development environment that allows creation and testing of specific
languages using grammars, automata, and other formal systems that specify sets of
strings. This paper describes such an environment, implemented in Java (JDK 1.2) for a
Linux operating environment.

The central classes in the formal language development environment are called
FormalLanguage and LanguageLab. A FormalLanguage object is a possibly infinite set
of strings over some finite alphabet of symbols, implemented by the Alphabet class.
Every FormalLanguage object must have an Alphabet object and a StringSpecifier object
that defines what strings are in the language. StringSpecifiers can have fixed or variable
alphabets. StringSpecifier has subclasses called Generator and Acceptor. Generators
produce sequences of strings and acceptors test individual strings for acceptance or
rejection. A FormalLanguage can be defined to have just a Generator, just an Acceptor,
or both a Generator and an Acceptor.

The LanguageLab class provides the user interface for creating, testing, loading, and
storing FormalLanguages, Acceptors, and Generators. The testing interface provides a
mechanism for both acceptance and generation of strings, even when the language does
not have both kinds of StringSpecifier. This is accomplished by using generators to
implement rudimentary (and inefficient) acceptors, and vice versa.

The FormalLanguage class has a subclass FiniteLanguage for finite sets of strings. The
Generator object for a finite language can produce a complete list of strings, and the list
can be searched to implement a simple Acceptor. With infinite languages, however, no
complete list exists, and Generators and Acceptors must be implemented as grammars,
automata, or other algorithms that recognize or express properties and repeatable patterns
within strings. The LanguageLab has editing frames for various common generation and
acceptance systems, including regular and context-free grammars, finite automata,
pushdown automata, and Turing machines.

The FormalLanguage, Alphabet, and StringSpecifier Classes

A formal language is a possibly infinite set of strings over some finite alphabet of
symbols. The FormalLanguage class encapsulates this definition. Each FormalLanguage
object has an Alphabet, a name, a description, a Generator, and an Acceptor. Strings in
the language are retrieved or tested by running the Generator or the Acceptor. The
Generator and Acceptor are both extensions of the abstract class StringSpecifier, and at
least one of them must be non-null for the FormalLanguage object to be fully defined.
Some FormalLanguages have both an Acceptor and a Generator. When this is the case,
there is no guarantee that the Acceptor and Generator actually specify the same set of
strings. Beyond verifying that the alphabets are the same, independently designed
Generators and Acceptors are not checked for consistency. If a user defines both a
Generator and an Acceptor for a language, it is the user’s responsibility to assure their
consistency. This is obviously a flaw in our automated system, but it is unavoidable. We
have already encountered one of those problems for which no general solution exists.

The Alphabet class encapsulates a finite set of symbols. It is an extension of the Java
ArrayList class. It has an add(char c) method for adding characters so that alphabets can
be built incrementally, and it has a Boolean method contains(char c) that tests whether
the alphabet contains a character c. We normally view alphabets as ordered sets, so that
the order of the alphabet can be used to determine order among strings over the alphabet.
To implement an ordering of the symbols, the Alphabet class has four methods that return
characters: getFirstSymbol(), getLastSymbol(), getSuccessor(char c), and
getPredecessor(char c). Finally, the class has a getSize() method that returns the number
of symbols in the alphabet, and a getAlphaString() method that returns the string formed
by concatenating all the alphabet characters in order.

The abstract StringSpecifier class has an Alphabet and a type as member components,
and it has methods for setting and getting these components. The type is simply a string
that indicates how the StringSpecifier is implemented. The class also has an abstract
Boolean method that tells whether or not the Alphabet is fixed. Some StringSpecifiers
may depend only on alphabet-independent properties of strings, such as string length.
Such StringSpecifier objects can allow their alphabets to change.

The StringSpecifier class is extended as either a Generator or an Acceptor. Both of these
extending classes are abstract. The Generator class has two abstract methods that return
strings: getFirst(), which returns the first string in the language, and getNext(), which
returns the next string in the language after the previously generated string. Thus a
Generator incrementally produces a list of strings. The class provides no specification of
the order of the list. The only essential requirement in designing a language is that the
Generator produces a string if and only if it is in the language.

The Acceptor class has a single abstract Boolean method accepts(String s) and a concrete
Boolean method alphaTest(String s). The alphaTest() method is intended to be used in
the implementation of the accepts() method to screen input strings for symbols that are
not in the alphabet. The accepts() method takes any string as a parameter and returns

true if the string is in the language. We would hope that the method would also return
false if the string is not in the language, but this is not required. The minimum
requirement is that the accepts(s) method returns true if and only if string s is in the
language.

The LanguageLab Class

The LanguageLab class implements an interface for experimenting with formal languages
(see Figure 1). Information about the language currently being viewed or developed is
displayed in the top panel of the LanguageLab frame. This information includes the
Alphabet, the name and description of the language, and the names and types of the
Generator and Acceptor for the language. The remainder of the frame is divided into two
panels, one dedicated to running the Acceptor and keeping a history of the results, and
the other dedicated to running the Generator and keeping a list of the results. The
Acceptor testing panel has a text box for entering a string to be tested, and a button to
activate the Acceptor. Depending on the results, the string is placed in a list box of
accepted strings or a list box of rejected strings. The panel also has a button to clear the
contents of the list boxes. The Generator test panel has a text box that allows the user to
specify how many strings to generate. After entering the number of strings desired, the

Figure 1. The LanguageLab interface.

user presses a button that invokes the Generator repeatedly and places each string
generated in a list box. This panel also has a button to clear the contents of the list box.

As described above, a FormalLanguage object must have an Acceptor or a Generator, but
it does not need to have both. If either of these StringSpecifier objects is missing, the
LanguageLab will attempt to build the other to provide a robust testing environment.

To perform an acceptance test using the Generator, the LanguageLab iteratively generates
strings, starting with a call to getFirst(). Each string is compared with the test string, and
if it matches, the test string is accepted. Of course, we might have a problem if the test
string is not in the language – nothing will match and the LanguageLab will have to
decide when to stop calling the Generator to get the next string in the language. If the
Generator is guaranteed to produce strings in non-decreasing order, the testing can stop
when the first string longer than the test string is produced by the Generator. However,
not all Generators have this property, so our automated system has another significant
flaw reflecting another major limitation of formal systems.

To build a Generator from an Acceptor, the LanguageLab needs the help of a general-
purpose, predefined FormalLanguage that contains all the strings over a specified
alphabet. This language, called AlphaStar, is packaged with the FormalLanguage class.
It has a predefined Generator called AllGenerator (packaged with the Generator class)
and a predefined Acceptor called AllAcceptor (packaged with the Acceptor class). Both
are implemented directly in Java code. The accepts(String s) method of AllAcceptor
simply calls alphaCheck(s) and returns the results. The getFirst() method of
AllGenerator returns the empty string, and the getNext() method uses the alphabet to
build the next string in lexicographic order. To build a Generator from some Acceptor,
LanguageLab creates the AlphaStar language using the alphabet of the Acceptor. It then
repeatedly gets strings from AlphaStar’s Generator and uses the Acceptor to filter them.
This will result in a Generator that produces strings in lexicographic order. A problem
will arise only if the Acceptor is not total – that is, if the Acceptor does not halt on all
inputs. Again, we come face-to-face with a fundamental limitation of formal systems.

The LanguageLab has a menu bar that can be used to invoke pop-up frames for creating
and editing Alphabets, Acceptors, and Generators. It also allows FormalLanguages,
Acceptors, and Generators to be loaded from files (or classes) and stored as files. File
formats for FormalLanguages and most types of Acceptors and Generators are defined
and implemented in the input/output methods.

Extensions of the Acceptor Class

The user of LanguageLab can create a language by defining an extension to the Acceptor
class. There are two options for defining an Acceptor. The first option is to write Java
code for a class that extends Acceptor and implements its abstract method. Such
Acceptors should return the string “Custom” as the Acceptor type. The AlphaStar
language mentioned in the previous section is an example of a language with a custom

Acceptor. Custom Acceptors are defined outside of the LanguageLab. The user writes
the code with a text editor, compiles it, and places the “.class” file in some directory.
When running LanguageLab, the user can select the “Load Class” option from the
Acceptor menu to browse for the class to be loaded. The selected class is then
instantiated by LanguageLab as the Acceptor for a new FormalLanguage object.

The second option for creating an Acceptor is to build an Automaton. The Automaton
class is an abstract extension of Acceptor that provides a parent class for state transition
machines such as finite automata, pushdown automata, and Turing machines. It has
fields and methods held in common by all its subclasses. Every Automaton has a set of
states and a set of state transition rules that are used to process an input word. One of the
states is designated to be the start state. It has concrete methods for getting and setting
the state set, for getting and setting the transition rules, for setting the start state, and for
getting the current state. It also has abstract methods changeState(), run(),
getCurrentSymbol(), and initialize(String s). An Automaton computation is started by
calling the initialize() method with an input word. The computation can proceed one step
at a time with calls to changeState(), or it run from current state to completion with a call
to run().

There are several classes representing the components of Automaton. The class State
defines an object that has a name and can be designated to be final or non-final. The
StateSet class is an extension of the Java ArrayList class that is used to store states. It has
all the methods of the ArrayList class, plus methods that allow states to be accessed by
name. An abstract class called Tuple and a class called Rule are used to represent state
transition rules. Every Tuple has a State and possibly some other symbols as
components. Every Rule is a pair of Tuples: an input Tuple and an output Tuple. The
input Tuple describes the current state of an Automaton, and the output Tuple specifies
how to move to the next state and possibly update other machine components. The class
OrderedRuleList represents a set of Rules. It has methods for adding and deleting Rules
and a method for retrieving the output Tuple for any given input Tuple. The set of
transition rules for every Automaton is implemented as an OrderedRuleList.

Figure 2. The StringSpecifier class hierarchy.

The abstract class Automaton is extended by concrete classes DFA (for deterministic
finite automata), DPDA (for deterministic pushdown automata), and TuringMachine (see
Figure 2). DFAs have Rules in which the input Tuple is a State/symbol pair, and the
output Tuple is a State singleton. DFAs have no internal storage medium. For DPDA
Rule sets, the input Tuples are triples with a State and two symbols, and the output
Tuples are State/string pairs. DPDAs have a stack for an internal storage medium. For
TuringMachine Rules, both the input Tuple and the output Tuple are State/symbol pairs.
TuringMachines have a tape for an internal storage medium.

The DFA class is packaged with a DFAFrame class that allows editing of deterministic
finite automata (see Figure 3). The editing frame displays the Alphabet, the State set, and
the list of Rules. The Alphabet and State set are updated as new Rules are added. States
can be selected from the list to be designated as final states or as the start state. There is a
text box for an input word and a control button that allows step-by-step monitoring of a
computation. When the user is ready for more comprehensive testing, he/she presses an
“ Apply” button to create a new FormalLanguage with the new DFA as its acceptor.
Control is then returned to the LanguageLab frame, where further acceptance and

Figure 3. The DFA editing frame.

generation tests can be conducted. The editing frame also allows DFAs to be loaded
from and stored to files. PDAs and TuringMachines have editing frames with similar
capabilities.

Extensions of the Generator Class

LanguageLab users can also create new languages by defining new Generators. As with
Acceptors, custom Generators can be written directly in Java code and loaded into the
LanguageLab as Java classes. Alternatively, users can take advantage of the abstract
Grammar class, which extends the Generator class. The Grammar class is a parent to
concrete subclasses for the common types of grammars such as regular grammars
(RegularGrammar), context-free grammars (CFG), Chomsky normal form grammars
(CNFGrammar), and unrestricted grammars (UnrestrictedGrammar). Every Grammar
has an Alphabet, a set of NonTerminals, a set of rewriting Rules, and a start symbol.
Supporting classes are defined to implement these components. The different kinds of
Grammars are more uniform than different kinds of Automata. All grammars use the
same mechanism for generating strings. The only variations are in the form of the rules.

The editing frame for Grammars shows the Alphabet, the NonTerminals, and the list of
Rules. These components are updated automatically as new rules are added. The frame
provides a mechanism for deriving strings by applying one rule at a time. As with
Automata, more comprehensive tests can be conducted in the LanguageLab frame after
the Grammar has been designed and applied. The editing frame has buttons for loading
and storing Grammars in the file system.

The OrderedGenerator and TotalAcceptor Interfaces

As discussed in a previous section, the getNext() method of Generator objects will
produce an ordered list of strings when called iteratively, but there are no specifications
for what the order will be. We strongly prefer a Generator that can produce strings in
order of non-decreasing length. This greatly simplifies the problem of determining
whether a string is in the language. Our collection of StringSpecifier classes contains a
Java interface called OrderedGenerator, which Generators can implement to designate
that they produce strings in non-decreasing order. OrderedGenerators have the methods
of the Generator class plus three additional methods: getFirst(int length), getLast(int
length), and getStringsOfLength(int length). The getFirst() and getLast() methods return
the first and last strings, respectively, with the specified length. The
getStringsOfLength() method returns a Java LinkedList containing all the strings in the
language of the specified length. Whenever a user can program these methods in a
custom Generator, it should be defined to implement the OrderedGenerator interface.
Among the predefined Grammar subclasses, the RegularGrammar and CNFGrammar
classes are designated to implement the OrderedGenerator interface.

The Acceptor class has a related interface called TotalAcceptor. As discussed earlier,
there are no guarantees that the accepts(s) method will halt for strings that are not in the
Acceptor’s language. With TotalAcceptors, however, we do have that guarantee. The
interface has the same methods as the Acceptor class with one addition: rejects(String s).
An Acceptor may be designated to implement the TotalAcceptor interface if it has a
rejects(s) method that returns true if and only if string s is not in its language. Whenever
a user creates a custom Acceptor whose accepts() method always halts, the user should
define a rejects() method that returns the opposite of the accepts() method and designate
the Acceptor to implement the TotalAcceptor interface. Of the predefined subclasses of
Automaton, DFA and PDA are designated to implement TotalAcceptor.

Conclusion

The theory of computation is necessarily abstract material, and most students have
difficulty mastering it in their first exposure to it. The LanguageLab is intended to place
the abstractions in a concrete development environment, in hopes that hands-on
experimentation will help students build a mental model of computation. The
LanguageLab can provide a laboratory component for any course in formal languages
and automata, using standard textbooks (e.g. Flanagan, 1999, and Hopcroft, Motwani,
and Ullman, 2001). Students will achieve a more thorough grasp of grammars and
automata by building and testing them in the laboratory. They can also be sent on a quest
for OrderedGenerators and TotalAcceptors for various computational problems, such as
determining whether two grammars or automata are equivalent with respect to the
languages they define. This quest will bring them face to face with the fundamental
limitations of computational systems. They will discover that a system powerful enough
to encapsulate infinite sets of strings is loaded with problems for which there are no
complete computational solutions.

References
Flanagan, D. (1999). Java in a Nutshell: A Desktop Quick Reference. Sebastopol, CA:
O’Reilly and Associates.

Hopcroft, J., R. Motwani, and J. Ullman (2001). Introduction to Automata Theory,
Languages, and Computation. Boston, MA: Addison-Wesley.

Lewis, H, and C. Papadimitriou (1998). Elements of the Theory of Computation. Upper
Saddle River, NJ: Prentice Hall.

