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Abstract 
Formal languages and Automata provide models for study of the fundamental principles 
and properties of computers and computer programs.  The models, by definition, are 
universal and abstract, and their relation to practical computing is not immediately 
obvious.  The simplicity and relevance of these models become clearer when they are 
implemented as computational objects in some programming language.  This paper 
describes a collection of Java objects that implement formal languages, automata, and 
grammars in a hands-on development environment.  The central classes, called 
FormalLanguage and LanguageLab, provide a user interface for creation, viewing, and 
manipulation of languages, grammars, and automata. 
 
A FormalLanguage object is a possibly infinite set of strings over some finite alphabet of 
symbols.  The Alphabet class is an ordered set of characters.  An instance of a 
FormalLanguage can have a Generator, which has methods that produce an ordered list of 
the strings in the language, and an Acceptor, which has a method that takes strings as 
input and determines whether they belong to the language.  The Grammar class is an 
extension of the Generator class, and the Automaton class is an extension of the Acceptor 
class.  Subclasses of Grammar and Automaton can be defined to implement regular and 
context-free grammars, finite automata, push-down automata, and Turing machines.  The 
LanguageLab contains facilities for creating, testing, and modifying grammars and 
automata. 
 
The LanguageLab has methods for converting generators to acceptors and vice-versa.  
The challenge of implementing these methods and of creating generators and acceptors 
for various languages quickly raises the major issues in computability and decidability.  
This collection of Java objects provides a framework and a robust set of tools for a hands-
on exploration of the theory of computing. 



Introduction 
One of the primary goals of any undergraduate computer science program is to make 
students aware that there are severe limitations on computational systems.  The world of 
computing would reap huge benefits if general-purpose programs could be written to 
analyze other programs and determine such properties such as program equivalence, 
correctness, and reliability.  In courses on the theory of computation, we try to 
demonstrate that such programs do not exist.  This endeavor requires a simple, unified 
model for computational problems and the programs that are written to solve them.  
There are several models that can be employed, but taking the approach of formal 
languages, we represent all programs and computational problems as possibly infinite 
sets of strings using some fixed alphabet of symbols.  This model, by definition, is 
universal and abstract, and its relation to practical computing may not be immediately 
obvious.  The simplicity and relevance of the model, however, becomes clearer when it is 
implemented in a development environment that allows creation and testing of specific 
languages using grammars, automata, and other formal systems that specify sets of 
strings.  This paper describes such an environment, implemented in Java (JDK 1.2) for a 
Linux operating environment. 
 
The central classes in the formal language development environment are called 
FormalLanguage and LanguageLab. A FormalLanguage object is a possibly infinite set 
of strings over some finite alphabet of symbols, implemented by the Alphabet class.  
Every FormalLanguage object must have an Alphabet object and a StringSpecifier object 
that defines what strings are in the language.  StringSpecifiers can have fixed or variable 
alphabets.  StringSpecifier has subclasses called Generator and Acceptor.  Generators 
produce sequences of strings and acceptors test individual strings for acceptance or 
rejection.  A FormalLanguage can be defined to have just a Generator, just an Acceptor, 
or both a Generator and an Acceptor. 
 
The LanguageLab class provides the user interface for creating, testing, loading, and 
storing FormalLanguages, Acceptors, and Generators.  The testing interface provides a 
mechanism for both acceptance and generation of strings, even when the language does 
not have both kinds of StringSpecifier.  This is accomplished by using generators to 
implement rudimentary (and inefficient) acceptors, and vice versa. 
 
The FormalLanguage class has a subclass FiniteLanguage for finite sets of strings.  The 
Generator object for a finite language can produce a complete list of strings, and the list 
can be searched to implement a simple Acceptor.  With infinite languages, however, no 
complete list exists, and Generators and Acceptors must be implemented as grammars, 
automata, or other algorithms that recognize or express properties and repeatable patterns 
within strings.  The LanguageLab has editing frames for various common generation and 
acceptance systems, including regular and context-free grammars, finite automata, 
pushdown automata, and Turing machines. 
 



The FormalLanguage, Alphabet, and StringSpecifier Classes 
 
A formal language is a possibly infinite set of strings over some finite alphabet of 
symbols.  The FormalLanguage class encapsulates this definition.  Each FormalLanguage 
object has an Alphabet, a name, a description, a Generator, and an Acceptor.  Strings in 
the language are retrieved or tested by running the Generator or the Acceptor.  The 
Generator and Acceptor are both extensions of the abstract class StringSpecifier, and at 
least one of them must be non-null for the FormalLanguage object to be fully defined.  
Some FormalLanguages have both an Acceptor and a Generator.  When this is the case, 
there is no guarantee that the Acceptor and Generator actually specify the same set of 
strings.  Beyond verifying that the alphabets are the same, independently designed 
Generators and Acceptors are not checked for consistency.  If a user defines both a 
Generator and an Acceptor for a language, it is the user’s responsibility to assure their 
consistency.  This is obviously a flaw in our automated system, but it is unavoidable.  We 
have already encountered one of those problems for which no general solution exists. 
 
The Alphabet class encapsulates a finite set of symbols.  It is an extension of the Java 
ArrayList class.  It has an add(char c) method for adding characters so that alphabets can 
be built incrementally, and it has a Boolean method contains(char c) that tests whether 
the alphabet contains a character c.  We normally view alphabets as ordered sets, so that 
the order of the alphabet can be used to determine order among strings over the alphabet.  
To implement an ordering of the symbols, the Alphabet class has four methods that return 
characters:  getFirstSymbol(), getLastSymbol(), getSuccessor(char c), and 
getPredecessor(char c).  Finally, the class has a getSize() method that returns the number 
of symbols in the alphabet, and a getAlphaString() method that returns the string formed 
by concatenating all the alphabet characters in order. 
 
The abstract StringSpecifier class has an Alphabet and a type as member components, 
and it has methods for setting and getting these components.  The type is simply a string 
that indicates how the StringSpecifier is implemented.  The class also has an abstract 
Boolean method that tells whether or not the Alphabet is fixed.  Some StringSpecifiers 
may depend only on alphabet-independent properties of strings, such as string length.  
Such StringSpecifier objects can allow their alphabets to change. 
 
The StringSpecifier class is extended as either a Generator or an Acceptor.  Both of these 
extending classes are abstract.  The Generator class has two abstract methods that return 
strings:  getFirst(), which returns the first string in the language, and getNext(), which 
returns the next string in the language after the previously generated string.  Thus a 
Generator incrementally produces a list of strings.  The class provides no specification of 
the order of the list.  The only essential requirement in designing a language is that the 
Generator produces a string if and only if it is in the language. 
 
The Acceptor class has a single abstract Boolean method accepts(String s) and a concrete 
Boolean method alphaTest(String s).  The alphaTest() method is intended to be used in 
the implementation of the accepts() method to screen input strings for symbols that are 
not in the alphabet.  The accepts() method takes any string as a parameter and returns 



true if the string is in the language.  We would hope that the method would also return 
false if the string is not in the language, but this is not required.  The minimum 
requirement is that the accepts(s) method returns true if and only if string s is in the 
language. 
 
 
The LanguageLab Class 
 
The LanguageLab class implements an interface for experimenting with formal languages 
(see Figure 1).  Information about the language currently being viewed or developed is 
displayed in the top panel of the LanguageLab frame.  This information includes the 
Alphabet, the name and description of the language, and the names and types of the 
Generator and Acceptor for the language.  The remainder of the frame is divided into two 
panels, one dedicated to running the Acceptor and keeping a history of the results, and 
the other dedicated to running the Generator and keeping a list of the results.  The 
Acceptor testing panel has a text box for entering a string to be tested, and a button to 
activate the Acceptor.  Depending on the results, the string is placed in a list box of 
accepted strings or a list box of rejected strings.  The panel also has a button to clear the 
contents of the list boxes.  The Generator test panel has a text box that allows the user to 
specify how many strings to generate.  After entering the number of strings desired, the 

 
Figure 1.  The LanguageLab interface. 

 



user presses a button that invokes the Generator repeatedly and places each string 
generated in a list box.  This panel also has a button to clear the contents of the list box. 
 
As described above, a FormalLanguage object must have an Acceptor or a Generator, but 
it does not need to have both.  If either of these StringSpecifier objects is missing, the 
LanguageLab will attempt to build the other to provide a robust testing environment. 
 
To perform an acceptance test using the Generator, the LanguageLab iteratively generates 
strings, starting with a call to getFirst().  Each string is compared with the test string, and 
if it matches, the test string is accepted.  Of course, we might have a problem if the test 
string is not in the language – nothing will match and the LanguageLab will have to 
decide when to stop calling the Generator to get the next string in the language.  If the 
Generator is guaranteed to produce strings in non-decreasing order, the testing can stop 
when the first string longer than the test string is produced by the Generator.  However, 
not all Generators have this property, so our automated system has another significant 
flaw reflecting another major limitation of formal systems. 
 
To build a Generator from an Acceptor, the LanguageLab needs the help of a general-
purpose, predefined FormalLanguage that contains all the strings over a specified 
alphabet.  This language, called AlphaStar, is packaged with the FormalLanguage class.  
It has a predefined Generator called AllGenerator (packaged with the Generator class) 
and a predefined Acceptor called AllAcceptor (packaged with the Acceptor class).  Both 
are implemented directly in Java code.  The accepts(String s) method of AllAcceptor 
simply calls alphaCheck(s) and returns the results.  The getFirst() method of 
AllGenerator returns the empty string, and the getNext()  method uses the alphabet to 
build the next string in lexicographic order.  To build a Generator from some Acceptor, 
LanguageLab creates the AlphaStar language using the alphabet of the Acceptor.  It then 
repeatedly gets strings from AlphaStar’s Generator and uses the Acceptor to filter them.  
This will result in a Generator that produces strings in lexicographic order.  A problem 
will arise only if the Acceptor is not total – that is, if the Acceptor does not halt on all 
inputs.  Again, we come face-to-face with a fundamental limitation of formal systems. 
 
The LanguageLab has a menu bar that can be used to invoke pop-up frames for creating 
and editing Alphabets, Acceptors, and Generators.  It also allows FormalLanguages, 
Acceptors, and Generators to be loaded from files (or classes) and stored as files.  File 
formats for FormalLanguages and most types of Acceptors and Generators are defined 
and implemented in the input/output methods. 
 
 
Extensions of the Acceptor Class 
 
The user of LanguageLab can create a language by defining an extension to the Acceptor 
class.  There are two options for defining an Acceptor.  The first option is to write Java 
code for a class that extends Acceptor and implements its abstract method.  Such 
Acceptors should return the string “Custom” as the Acceptor type.  The AlphaStar 
language mentioned in the previous section is an example of a language with a custom 



Acceptor.  Custom Acceptors are defined outside of the LanguageLab.  The user writes 
the code with a text editor, compiles it, and places the “.class” file in some directory.  
When running LanguageLab, the user can select the “Load Class” option from the 
Acceptor menu to browse for the class to be loaded.  The selected class is then 
instantiated by LanguageLab as the Acceptor for a new FormalLanguage object. 
 
The second option for creating an Acceptor is to build an Automaton.  The Automaton 
class is an abstract extension of Acceptor that provides a parent class for state transition 
machines such as finite automata, pushdown automata, and Turing machines.   It has 
fields and methods held in common by all its subclasses.  Every Automaton has a set of 
states and a set of state transition rules that are used to process an input word.  One of the 
states is designated to be the start state.  It has concrete methods for getting and setting 
the state set, for getting and setting the transition rules, for setting the start state, and for 
getting the current state.  It also has abstract methods changeState(), run(), 
getCurrentSymbol(), and initialize(String s).  An Automaton computation is started by 
calling the initialize() method with an input word.  The computation can proceed one step 
at a time with calls to changeState(), or it run from current state to completion with a call 
to run(). 
 
There are several classes representing the components of Automaton.  The class State 
defines an object that has a name and can be designated to be final or non-final.  The 
StateSet class is an extension of the Java ArrayList class that is used to store states.  It has 
all the methods of the ArrayList class, plus methods that allow states to be accessed by 
name.  An abstract class called Tuple and a class called Rule are used to represent state 
transition rules.  Every Tuple has a State and possibly some other symbols as 
components.  Every Rule is a pair of Tuples: an input Tuple and an output Tuple.  The 
input Tuple describes the current state of an Automaton, and the output Tuple specifies 
how to move to the next state and possibly update other machine components.  The class 
OrderedRuleList represents a set of Rules.  It has methods for adding and deleting Rules 
and a method for retrieving the output Tuple for any given input Tuple.  The set of 
transition rules for every Automaton is implemented as an OrderedRuleList. 

Figure 2.  The StringSpecifier class hierarchy. 



 
The abstract class Automaton is extended by concrete classes DFA (for deterministic 
finite automata), DPDA (for deterministic pushdown automata), and TuringMachine (see 
Figure 2).  DFAs have Rules in which the input Tuple is a State/symbol pair, and the 
output Tuple is a State singleton.  DFAs have no internal storage medium.  For DPDA 
Rule sets, the input Tuples are triples with a State and two symbols, and the output 
Tuples are State/string pairs.  DPDAs have a stack for an internal storage medium.  For 
TuringMachine Rules, both the input Tuple and the output Tuple are State/symbol pairs.  
TuringMachines have a tape for an internal storage medium. 
 
The DFA class is packaged with a DFAFrame class that allows editing of deterministic 
finite automata (see Figure 3).  The editing frame displays the Alphabet, the State set, and 
the list of Rules.  The Alphabet and State set are updated as new Rules are added.  States 
can be selected from the list to be designated as final states or as the start state.  There is a 
text box for an input word and a control button that allows step-by-step monitoring of a 
computation.  When the user is ready for more comprehensive testing, he/she presses an 
“ Apply”  button to create a new FormalLanguage with the new DFA as its acceptor.  
Control is then returned to the LanguageLab frame, where further acceptance and 

Figure 3.  The DFA editing frame. 



generation tests can be conducted.  The editing frame also allows DFAs to be loaded 
from and stored to files.  PDAs and TuringMachines have editing frames with similar 
capabilities. 
 
 
Extensions of the Generator Class 
 
LanguageLab users can also create new languages by defining new Generators.  As with 
Acceptors, custom Generators can be written directly in Java code and loaded into the 
LanguageLab as Java classes.  Alternatively, users can take advantage of the abstract 
Grammar class, which extends the Generator class.  The Grammar class is a parent to 
concrete subclasses for the common types of grammars such as regular grammars 
(RegularGrammar), context-free grammars (CFG), Chomsky normal form grammars 
(CNFGrammar), and unrestricted grammars (UnrestrictedGrammar).  Every Grammar 
has an Alphabet, a set of NonTerminals, a set of rewriting Rules, and a start symbol.  
Supporting classes are defined to implement these components.  The different kinds of 
Grammars are more uniform than different kinds of Automata.  All grammars use the 
same mechanism for generating strings.  The only variations are in the form of the rules. 
 
The editing frame for Grammars shows the Alphabet, the NonTerminals, and the list of 
Rules.  These components are updated automatically as new rules are added.  The frame 
provides a mechanism for deriving strings by applying one rule at a time.  As with 
Automata, more comprehensive tests can be conducted in the LanguageLab frame after 
the Grammar has been designed and applied.  The editing frame has buttons for loading 
and storing Grammars in the file system. 
 
 
The OrderedGenerator and TotalAcceptor Interfaces 
 
As discussed in a previous section, the getNext() method of Generator objects will 
produce an ordered list of strings when called iteratively, but there are no specifications 
for what the order will be.  We strongly prefer a Generator that can produce strings in 
order of non-decreasing length.  This greatly simplifies the problem of determining 
whether a string is in the language.  Our collection of StringSpecifier classes contains a 
Java interface called OrderedGenerator, which Generators can implement to designate 
that they produce strings in non-decreasing order.  OrderedGenerators have the methods 
of the Generator class plus three additional methods:  getFirst(int length), getLast(int 
length), and getStringsOfLength(int length).  The getFirst() and getLast() methods return 
the first and last strings, respectively, with the specified length.  The 
getStringsOfLength() method returns a Java LinkedList containing all the strings in the 
language of the specified length.  Whenever a user can program these methods in a 
custom Generator, it should be defined to implement the OrderedGenerator interface.  
Among the predefined Grammar subclasses, the RegularGrammar and CNFGrammar 
classes are designated to implement the OrderedGenerator interface. 
 



The Acceptor class has a related interface called TotalAcceptor.  As discussed earlier, 
there are no guarantees that the accepts(s) method will halt for strings that are not in the 
Acceptor’s language.  With TotalAcceptors, however, we do have that guarantee.  The 
interface has the same methods as the Acceptor class with one addition:  rejects(String s).  
An Acceptor may be designated to implement the TotalAcceptor interface if it has a 
rejects(s) method that returns true if and only if string s is not in its language.  Whenever 
a user creates a custom Acceptor whose accepts() method always halts, the user should 
define a rejects() method that returns the opposite of the accepts() method and designate 
the Acceptor to implement the TotalAcceptor interface.  Of the predefined subclasses of 
Automaton, DFA and PDA are designated to implement TotalAcceptor. 
 
 
Conclusion 
 
The theory of computation is necessarily abstract material, and most students have 
difficulty mastering it in their first exposure to it.  The LanguageLab is intended to place 
the abstractions in a concrete development environment, in hopes that hands-on 
experimentation will help students build a mental model of computation.  The 
LanguageLab can provide a laboratory component for any course in formal languages 
and automata, using standard textbooks (e.g. Flanagan, 1999, and Hopcroft, Motwani, 
and Ullman, 2001).  Students will achieve a more thorough grasp of grammars and 
automata by building and testing them in the laboratory.  They can also be sent on a quest 
for OrderedGenerators and TotalAcceptors for various computational problems, such as 
determining whether two grammars or automata are equivalent with respect to the 
languages they define.  This quest will bring them face to face with the fundamental 
limitations of computational systems.  They will discover that a system powerful enough 
to encapsulate infinite sets of strings is loaded with problems for which there are no 
complete computational solutions. 
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