
Cell-unit algorithm of compression for webcam

Tien V. Nguyen
Computer Science major

University of Wisconsin – Parkside
nguyen1@cs.uwp.edu

Hieu T. Nguyen

 Computer Engineering major
 University of Arkansas – Fayetteville

txn02@uark.edu

Abstract

This paper discusses a compression algorithm for webcam video data. The need for solutions to
video conferencing has grown considerably. As a result, so has the need for applications that
can transfer data between machines in reasonable time. Today there are many choices for video
compression in terms of compression factor, quality, bit-rate and cost. The same idea employed
by this algorithm can be applied to process any movie data and can be represented as a series of
images. In this paper, we only use webcam movies as a basis to illustrate the experimental
results and implementation of our algorithm. The idea is to take advantage of the fact that
webcams are generally placed in fixed positions. Significant portions of the space do not
change between two frames, so there is no need to retransmit these static portions. The
algorithm has a linear run-time so it can combine with any movie or image compression
algorithms to produce significantly smaller compressed data. The approach we are going to
present has several improvements on how we handle data to produce efficient compression.
Every part of data in the algorithm uses bits, with the size multiple of eight so that data will be
stored in the least space as all primitive types have the size multiple of bytes. As videos’
quality is inversely proportional with the size, we choose a value where both quality and data
size are acceptable and also adjustable, depending on users’ needs. It allows efficient
compression, yet still keeps the quality of the videos so that people can transfer them through
small bandwidth networks. At the end of this paper, we include the results of our experiments
in which we apply the algorithm in combination with the JPEG image compression technique
to compress three typical webcam movies into a size only 5-10% of the original data. In
comparison with other movie compression standards, it shows better results in terms of
compressed size.

Keywords
Webcam video compression, compression algorithm, heuristics.

Introduction

Video conferencing is becoming a popular method for holding meetings among
people spread across diverse geographic locations. Most video conferencing relies on
webcams for image collection. Low bandwidth Internet connections make it critical
that we have good image compression for webcams. We present an algorithm that is
designed specifically for compressing sequences of images generated by a webcam.
Our algorithm is efficient and gives good compression when compared with others.

Our Approach

Evaluation of image compression techniques is based on different criteria: the
compression ratio, the quality of the movies after being decompressed, and the
performance speed. However, these factors usually limit each other. The more
sophisticated the compression technique is, the slower the performance. Also, a better
compression ratio is usually obtained at the cost of lower image quality. Therefore, the
decision of which technique to use depends on the nature of the application. Webcam
movies do not require high quality images. Thus, it is a better to use techniques that
significantly reduce the amount of data transmitted, but still keep acceptable quality.
Our goal was to combine the best of these techniques into one algorithm.

Vector Quantization

One idea that we apply is vector quantization.[12] Vector quantization is the process of
dividing an image into small rectangular subunits, or unit images, that can be treated
individually and recombined as needed. Webcams are usually put in fixed positions so they
record images from the same space. We can re-use some unit images from the previous frames
for the current frame, based on the similarities between the frames.

Figure 1: Frame is divided into 8x8 unit squares.

First, we divide the images into 8x8 unit images. We will be working on unit images instead of
using the whole frame. There are two types of unit images: new unit-images and existing unit-
images. Storing and re-using the similar unit images in different frames will reduce the size of
the movie significantly.

Lempel –Ziv-Welch (LZW) Compression

We also apply LZW compression to our images [11]. "The original Lempel Ziv approach to
data compression was first published in 1977. Terry Welch's refinements to the algorithm were
published in 1984. The algorithm is surprisingly simple. In a nutshell, LZW compression
replaces strings of characters with single codes. It does not do any analysis of the incoming
text. Instead, it just adds every new string of characters it sees to a table of strings.
Compression occurs when a single code is output instead of a string of characters." [1]

The Algorithm

There are many similar unit images between two consecutive frames.

Figure 2: The repetitions in two consecutive frames

Each frame is represented by three elements, depending on the types of unit images it contains:
a. A bitmap of similar-unit distributions: a 2D binary array to determine whether a unit image

exists in a previous frame or not (1 for new unit images, 0 for existing unit images)

Figure 3: A sample bitmap according to a frame

b. A list of repeating unit images: points each repeating unit image to the similar unit in the

previous frames.
c. A list of new unit images: contains compressed information about each new unit image.
In addition to that, a list of “storing images” will be created in order to support finding the
similar-units. It is a circular queue with fixed length so we are able to store the latest similar-
images for each square unit.

Figure 4: A circular queue for each unit image

The pseudocode to process on frame is:

Foreach unit image {
 Find the similar unit images
 If (found)
 Process repeating unit image
 Else
 Process new unit image
}

We discuss the details of each part separately.

Finding the similar unit images

We create matrix A to represent the pixels’ brightness for each unit image.

The brightness of a pixel is considered according to this formula:

Brightness = 0.299xR + 0.587xG + 0.114xB [13]

Take the following inequality in consideration:

CBijjAi ≤−∑ ∑ ||
7

0

7

0
 (*)

A and B are two matrix representations for two unit images. C is called constant accuracy.

A and B are similar if (*) is satisfied. Two unit images are similar when their matrix
representations are similar. The greater C is, the higher possibility that A and B are similar, but
increasing C may cause diffusion in video quality.

The identification of similar units is based on the intensity level of the 64 pixels, and color
information is ignored. If a similar unit is found, then a 4-bit index is transmitted in place of the
64 pixel values. During reconstruction, the 4-bit index is used to access a block at the
corresponding spatial position from one of the preceding frames. In general, this will lead to
reconstruction errors since the condition is only for similar, not necessarily identical, unit
images. In itself, this would be acceptable, but may lead to cumulative errors, for example in a
situation where the lighting conditions are varying. The similarity of units during compression
may be small (since lighting would not generally vary greatly over 16 frames) and therefore
units could be identified as being similar. The reconstruction process replaces similar units
with units from earlier frames. This may occur many times in succession, possibly over many
multiples of up to 16 frames, in which case errors would accumulate. However, in our
algorithm, C defaults to 500. We arrived at this value empirically. Our experiments found this
to be the most acceptable value.

Figure 5: A frame with new unit images only

Process repeating unit images

To store a repeating unit image, we only need 4 bits to represent the index of the similar unit in
the list of “storing images”. This is appended to a vector of all repeating unit images we have
encountered in this image.

Process new unit images

The new unit images are placed into a blank image frame and will be compressed in JPEG2000
format.

Figure 6: A frame with new unit images

Our data structure translates directly into an external file format.
o The first part contains the bitmap of similar-unit distributions. Values in the bitmap are

only 0s and 1s so we only need a byte for every 8 units. It takes 38 bytes for every frame
with size 160x120.

o The following part contains 4-bit numbers that represent the repeating unit-images.
o At the end of the file, we write out the list of new unit-images in compressed format. These

images are in JPEG2000 format so they have same headers (623 bytes for each image),
which we can remove.

Empirical Analysis

Table 1 shows the efficiency of the algorithm according to real data, compared to some other
available compressions. All data sizes are measured in standard format of each compression.
The algorithm is run on 3 test cases with different sizes. (There is a sample program to show
the work.)
• Test I is 25-second long movie in bright environment with discontinuous motions.
• Test II is 1-minute long movie in bright environment with discontinuous motions.
• Test III is 1-minute long movie in dark environment with continuous motions.

As can be seen in the data, our algorithm compares favorably with the others. The best results
are obtained when the similarities between the frames is maximized as in Test III.

Table 1: Space comparison of different algorithms
Numbers are the test sizes, shown in Kb

Video Compression Standard Test I Test II Test III
Our Algorithm 195 264 52
Intel Indeo® Video
R4.5(JPGVideo)

207 498 320

Intel Indeo® Video
R3.2(JPGVideo)

246 592 369

Boomer Video v4 249 570 377
Intel Indeo® Video
R5.10(JPGVideo)

281 670 422

Microsoft Video 1(JPGVideo) 337 816 516
Cinepak Codec by Radius
(JPGVideo)

502 1130 1130

TYUV Codec (JPGVideo) 2200 4950 4950

Figure 7: Statistics for 3 sample test cases

0

1000

2000

3000

4000

5000

6000

Test I Test II Test III

Cell-unit
compression

Intel Indeo®
Video
R4.5(JPGVideo)

Intel Indeo®
Video
R3.2(JPGVideo)

Boomer Video v4

Intel Indeo®
Video
R5.10(JPGVideo)

Microsoft Video
1(JPGVideo)

Cinepak Codec
by Radius
(JPGVideo)

TYUV Codec
(JPGVideo)

References

1. Nelson M., LZW Data Compression, Dr. Dobb's Journal, Oct 1989
2. Christopoulos C.A, Askelof J. and Larsson M., Efficient region of interest encoding

techniques in the upcoming JPEG2000 still image coding standard, Proceedings of IEEE
Int. Conference on Image Processing (ICIP 2000), Vol II, pp. 41-44

3. Christopoulos C.A., Skodras A.N., Philips W., Cornelis J., and Constantinides A.G.,
Progressive very low bit rate image coding, Proceedings of the International Conference on
Digital Signal Processing, pp. 433-438

4. Anson, Louisa. Image Compression: Making Multimedia Publishing a Reality. CD-ROM
Professional 6, no. 5 (September 1993) pp. 16-18; 20-24; 26; 28-29

5. Cox, Jennifer, and Mohamed Taleb. Images on the Internet: Enhanced User Access.
Database 17, no. 4 pp. 18-22; 24-26.

6. Takamura S. and Takagi M, Lossless image compression with lossy image using adaptive
prediction and arithmetic coding, Proc. Data Compress. Conf., pp. 155-174; 166-174.

7. Gall D. Le, MPEG: A video compression standard for multimedia applications,
Communications of the ACM, vol. 34, no. 4, pp. 46—58; 305-313

8. Shen K. and Delp E. J., "A Spatial-Temporal Parallel Approach For Real-Time MPEG
Video Compression, Proceedings of the 25th International Conference on Parallel
Processing, pp. II100-II107

9. Shen K and Delp E.J., A parallel implementation of an MPEG encoder: Faster than real-
time!, Proceedings of the SPIE Conference on Digital Video Compression: Algorithms and
Technologies, pp. 407-418

10. Jiang J., A low-cost content adaptive and rate controllable near-lossless image codec in
DPCM domain, IEEE Trans. on Image Processing, Vol. 9, No. 4, pp. 543-554

11. Kida T., Takeda M., Shinohara A., Miyazaki M., and Arikawa S., Multiple patterns
matching in LZW compressed text. In Proc. DCC'98, pp. 103-112

12. Gray R. M., Vector Quantization, IEEE ASSP Magazine, pp. 4--29, April 1984.
13. Foley J. D., van Dam A., Feiner S. K., Hughes J. F., Computer Graphics 2nd edition, 1990.

Acknowledgments

We thank Huy Nguyen for useful discussions and Ha Tran for providing us useful references.
We are grateful for the helpful comments of Dr Stuart Hansen.

