
 The Use of Computer Animation in Teaching Discrete
Structures Course

Chi-Cheng Lin Mingrui Zhang

Computer Science Department
Winona State University

Winona, Minnesota, MN 55987
{clin, mzhang}@winona.edu

Abstract

Abstract theoretical concepts of computer science are among the most complicated to
teach. The instructors expect students to comprehend a number of computer algorithms
in a short period of time, often within a week. Traditionally, the course “Discrete
Structures” is taught to students without hands-on practice or programming. The
instructor explains the algorithms by manually going through examples. Doing so may
demand a large amount of time and cognitive effort on the part of the instructor. It also
requires students to manually work through the algorithm for different examples to fully
understand the behavior of the algorithm.

This paper presents a project that adopts a student-centered, learning by doing approach
for students to learn and explore computer science theories by adopting computer
animation and visualization techniques.

Introduction

Abstract theoretical concepts of computer science are among the most complicated to
teach. Students who are encountering computer theories for the first time find that they
must delve into logic, discrete mathematics, and programming. The instructors expect
students to comprehend a number of computer algorithms in a short period of time, often
within a week. They try hard to motivate students to learn, but students struggle and feel
hampered and frustrated. However, understanding computer science theories is critical.
Traditionally, the course “Discrete Structures” is taught to students without hands-on
practice or programming. This course serves to introduce fundamental computer science
theories to computer science majors. This course provides students with an introduction
to the applications of discrete mathematical structures to computer science with emphasis
on algorithms, analysis of algorithms, and structures such as graphs and trees. The
instructor explains the algorithms by manually going through examples. Doing so may
demand a large amount of time and cognitive effort on the part of the instructor. It also
requires students to manually work through the algorithm for different examples to fully
understand the behavior of the algorithm.

People tend to have a better response to pictorial information and extract more
information from pictures than from text and numerical data. We can take the maximum
advantage of pictorial information via animation, a dynamic, powerful visualization tool
that assists humans to gain a better comprehension of abstract concepts as well as
physical activities. The authors designed and implemented a project that adopted
computer animation and visualization technologies to aid students to comprehend
computer theories in teaching Discrete Structures. The primary goals of the project are 1)
to establish a friendly and effective environment to teach computer theories by adopting
advanced computer technologies, such as animation and visualization techniques, and 2)
to motivate students to learn computer theories by creating animation products to
visualize theoretical concepts. The project used a student-centered, learning by doing
approach. The authors designed a framework suitable for developing hands-on labs for
class use using the software 3D Studio MAX. Students in the class then developed
computer animation products using the framework to visualize the computer algorithms
and to demonstrate computer theories. Students worked in groups, which helps them
learn and explore computer science theories collaboratively.

This paper discusses the approach and planning of the project, the animation framework,
and the assessment of the effectiveness of this project. The results and snap shots of
some of the student animation products are also included in the paper. We conclude the
paper with the discussions on the experiences gained and lessons learned from this
project.

Project Overview

Background

Various approaches have been adopted to use algorithm visualization in teaching
computer algorithms. One approach is to provide animations for students to observe how
computer algorithms work. A collection of such work can be found on-line at [5], as well
as at many other web sites on the Internet. Although this kind of passive viewing is
helpful for students to see the steps an algorithm performs, to make learning more
effective, solutions are needed to make students take a more active role in algorithm
visualization. Approaches such as inserting stop-and-think questions in the visualization
[3], and the provision of dual modes, namely “show me” (i.e., passive) mode and “I’ll
try” (i.e., active) mode [2], have been proposed for this purpose. Another approach, such
as Stasko’s Samba [4], requires students themselves to create animations of computer
algorithms.

Both of us teach the Discrete Structures course in our institution. We completed a project
that employed the idea of algorithm visualization in the class. Our approach, similar to
Stasko’s, required students to be actively involved in creating animations to demonstrate
how computer algorithms work. The details of our project are given in this section.

Plan and Approach

Our project was carried out over a period of two semesters in which the first semester
served as the pilot study. The idea is to use the lessons learned and the feedback from
students in the pilot study to improve the execution of the project in the second semester.
Our approach is a student-centered approach and we would like students to be highly
involved in the project. The project counted as 5% of a student’s final grade to make
students serious about it, while not to replace other important pedagogic activities of the
class.

We used a professional, commercial software package, 3D Studio MAX, for developing
animations. Students had to develop computer animations to visualize a variety of
computer algorithms using 3D Studio MAXScript [1], the script language of 3D Studio
MAX. This approach is unlike most of the algorithm visualization projects that use open
software, such as JAVA, to develop their work. Although we want students to take an
active role in this project, we don not want them to spend a significant amount of time
figuring out how to use MAXScript – they should spend most of their time on studying
algorithms. Therefore, a short introduction for using 3D Studio Max to develop an
animation was given to the students. We also developed sample tutorial scripts showing
students the fundamentals, such as how to create 3D objects, how to create vertices,
edges, and labels of a graph, how to do recursion, and how to timestamp for animations.

Group projects were assigned to groups of two students. Toward the end of a semester,
students presented their animations to the class with the explanations of the computer
algorithms. A course evaluation was performed at the end of each semester. Based on
the feedback and the results of students’ projects from the pilot study, we found that most
students did their projects by manually animating each step of execution of a computer
algorithm. In order to let students focus more on the computer algorithm, we improve the
demo scripts by separating data structures from the algorithm. We identified two types of
data structures for sorting/search algorithms and graph algorithms, respectively. We
expect students to put more efforts into debugging their algorithms than delving into the
appearance of the animation. The revised scripts and demos were then used in the second
semester in which this project was carried out, and proven a success.

To summarize, our project has the following characteristics:

• Student-centered approach. Our project adopted a student-centered, learning by
doing approach. Students were required to create animation products in stead of
point-and-clicking to view animations passively.

• Collaboration learning. Students worked in groups of two so that they can learn
from their fellow students and explore computer theories collaboratively.

• Separation of data structure and algorithm. By providing pre-constructed data
structures to students, students can spend more time on developing algorithm
animation than creating data structure in the first place.

• Use of professional commercial software. 3D Studio MAX provides a complete,
powerful set of 3D object modeling and animation functions. Its script language,
MAXScript is easy to learn in spite of the complexity of 3D Studio MAX
features. As the students can view fancy results immediately, they were highly-
motivated to create their own animation products.

• Movies as final products. Using the commercial package makes generating an
animation into a movie done easily. With a movie, the functions of rewind, fast
forward, pause, and starting at any point in the animation comes along naturally.

• Availability of script files. Script files created by students are made available to
others. They are free to examine, modify, and experiment on other groups' script
files.

Project Assessment

It is important to assess and then improve the effectiveness of our project. We performed
surveys at the end of both semesters. The evaluation performed at the end of the pilot
study served as an assessment tool for us to improve the execution of our project in the
second semester.

The results from the evaluation performed at the end of the pilot study shows that
students enjoyed their projects, considered the projects excellent ideas. The animation
projects enforced their learning of the computer algorithms. Most students selected the
highest two ratings for each category of the survey. In general, the pilot study was a
success. We did receive comments, such as “Force a general implementation of

algorithms …’, “… to get assignment earlier …”, “I didn’t know what to expect …”, and
“… should teach more about MAXScript language, so we can make it more attractive …”
from students, however.

Based on the results of the surveys, especially on the comments, we adopted the
following approaches to improve.

1. Students will be given a month for their project.
2. A tutorial to train students to use MAXScript to make animation will be made

available to the class.
3. Sample scripts need to be improved to strengthen on the implementation of the

computer algorithms.
4. High quality animation demos need to be provided to help students to improve the

quality of their animations.

At the beginning of the next semester, some senior students from the Computer Graphics
course were assigned to create a tutorial for programming animations using MAXScript.
The result was a high quality tutorial introduction to the MAXScript along with
impressive demonstrations. Those scripts were made available to students taking discrete
structures as early as possible. Over all, the project was a success. Students’ suggestions
include “Do more projects”, “Make more of it, it is really fun”, “Unexpectedly fun.”
They considered the projects are “relevant to the course” and “it is helpful” for their
study. Besides the positive ratings and comments, certain problems remain, nevertheless.
Some students were not motivated enough to study discrete structures. They thought the
subject is difficult to grasp, boring to learn anyway. Some students regarded the
animation project as an add-on to their work load.

Results and Examples

More than a dozen of algorithm animations have been produced by students taking
discrete structures. In general, the students’ projects can be classified into two groups.
The first group consists of sorting/search algorithms, such as bubble sort, insertion sort,
and binary search. The second group consists of graph/tree algorithms, such as Dijkstra’s
shortest path, Prim’s minimal spanning tree, and binary search tree.

Sample snapshots of two of the animation products created by students are included in
this paper. Figure 1 shows two snapshots taken from the insertion sort animation.

 Figure 1: Snapshots from Insertion Sort Animation

Figure 2 shows two snapshots taken from Dijkstra’s shortest path algorithm. The graph
used in this animation served as a uniform framework for all graph algorithm animations.
As mentioned earlier, the uniform framework allowed students to focus more on
algorithms than on animation.

Figure 2: Snapshots from Dijkstra’s Shortest Path Algorithm Animation

Conclusion

Algorithm visualization is a valuable teaching and learning tool in computer science, and
was adopted in our Discrete Structure class. We employed a student-centered approach
which required students to create 3D animation products instead of watching animations
passively. Students worked in groups so that they can benefit from collaborating
learning. 3D Studio MAX was used to develop animation products. The major
advantage of using commercial software is the complete, rich set of modeling and
animating tools available for creating “cool” animation products, and it really motivated

students to study computer algorithms. Students also benefited from exposure to
professional software package. Cost is a concern, however. In order to let students focus
more on the computer algorithm, we created a framework that separated data structures
from the algorithm so that students can put more efforts into debugging their algorithms
than delving into the appearance of the animation. The result of our project is promising.
Most students considered learning algorithms by making animation is helpful and
enjoyable, and would like to do more animations. Only a few students considered it as a
burden extra to their study.

Based on the experiences obtained from this project, we are currently working on projects
for improving teaching and learning computer science courses besides the Discrete
Structure course. One of such projects is the use of animation in teaching the
Introduction to Assembly Language and Architecture course. Another is the research on
using projects in the upper division courses to support teaching lower division courses.

References

1. Bicalho, A. and Feltman S. (2000). Mastering MAXScript & the SDK for 3D Studio

MAX. Alameda, California: SYBEX.
2. Jarc, D. J., Feldman, M. B., and Heller R. S. (2000). Accessing the Benefits of

Interactive Prediction Using Web-based Algorithm Animation Courseware. In
Proceedings of the thirty-first SIGCSE technical symposium on Computer science
education, Austin, Texas, 32(1):377-381.

3. Naps, T. Eagan, J., and Norton L. (2000). JHAVÉ -- An Environment to Actively
Engage Students in Web-based Algorithm Visualizations. In Proceedings of the
thirty-first SIGCSE technical symposium on Computer science education, Austin,
Texas, 32(1):109-113.

4. Stasko, J. (1997). Using Student-Built Algorithm Animations as Learning Aids. In
Proceedings of the twenty-eighth SIGCSE technical symposium on Computer science
education, San Jose, California, 29(1):25-29.

5. Zhang, M. A small collection of algorithm animations on the Internet, from
http://csweb.winona.edu/zhang/others.htm.

Acknowledgements

This project was supported in part by the Minnesota State Colleges and Universities
Center for Teaching and Learning and the Bush Foundation.

