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Abstract: 
 
Ramsey number R(m,n) = r is the smallest integer r such that a graph of r vertices has 
either a complete subgraph (clique) of size m or its complement has a complete subgraph 
of size n.  Currently, the exact value of R(5,5) is unknown, however the best known 
lower and upper bounds are 43 <= R(5,5) <= 49.  In this paper we will discuss a method 
that we use to construct a better lower bound, namely, by way of genetic programming 
(GP)/ genetic algorithm (GA). This method involves standard genetic algorithms 
mutations and crossovers as recombination techniques as well as using algorithms and 
heuristics to find maximum clique of a graph. We implemented this method on a 
particular genetic algorithm software called Sutherland.  Results will include the “best” 
graphs found using this technique over multiple runs, statistical data as to the likelihood 
of increasing the current best-known lower bound of R(5,5) if not strictly the lower 
bound. 
 



 

1.  Introduction to Problem 
 
Our project deals with the concept of Ramsey Numbers.  The Ramsey Number Problem 
is also referred to as the Party Problem or a form of the Maximum Clique Problem.  The 
basic idea of a Ramsey Number can be described using the following example: 
 
 
Example 1: 
 
A Ramsey Number, R(m,n) = r, is the smallest number of people r at a party in which 
either everyone in a group of people of size m know everyone else in that group or 
everyone in a group of people of size n does not know anyone else in that group. 
 
 
When we think of this in a little more mathematical way, it can be defined by the 
following: 
 
 
Definition 1: 
 
A Ramsey Number, R(m,n) = r, is the smallest size of a graph r such that every graph of 
that size has either a clique of size m or an independent set of size n. 
 
An equivalent definition of a Ramsey Number is also given: 
 
 
Definition 2: 
 
A Ramsey Number, R(m,n) = r, is the smallest size of a graph r such that every graph of 
that size has either a clique of size m in the graph or a clique of size n in its complement. 
 
Our main goal of this project has been the optimization of r = R(5,5), i.e. finding the 
smallest integer r such that all graphs, G, of size r include a clique of size 5 in either G or 
the complement of G.  Currently, R(5,5) is between 43 and 49 inclusive.  We are going to 
focus on the current lower bound, 43. 
 
In the following sections of this paper, the equivalence of both definitions of a Ramsey 
Number that were previously mentioned will be explored more fully.  A general overview 
of Ramsey Theory will also be explored, along with a look at how to theoretically solve a 
Ramsey Number problem.  After this theory is explored, the implementation of what was 
actually created will be described along with the methods used.  The final sections of the 
paper contain results and their analysis, along with some conclusions that can be drawn 
from the results. 
 
 



 

2. Mathematical Foundation 
 
This section will give a brief description of the main graph theory concepts used in 
Ramsey Numbers.  We will discuss a few theories related to Ramsey Numbers and in 
particular, R(5,5).   
 
 
Graph Theory Foundation 
 
It is clear from definition 1 that we need to define a graph, a clique, and an independent 
set before we can fully understand the definition of a Ramsey Number.  Therefore, these 
definitions are given: 
 
 
Definition 3:  
 
A graph, denoted G = (V,E), consists of a set of vertices, V, and a set of edges, E, where 
the edges are lines that connect pairs of vertices.  Figure 1 shows examples of graphs. 
 
 
Definition 4:  
 
A clique of a graph is a subset of vertices such that there exists an edge between all 
possible pairs of vertices in that subset of vertices.  Figure 1 (b) is an example of a clique 
of size 3 in a graph (the clique is in bold). 

 
 

Definition 5:  
 
An independent set of a graph is a subset of vertices such that there exists no edges 
between any pair of vertices in that subset of vertices.  Figure 1 (c) is an example of an 
independent set of size 3 of the graph in Figure 1 (b). 
 
 
Definition 6:   
 
A complete graph is a graph such that all pairs of vertices have an edge that connects 
both vertices.  Complete graphs are notated Ki, where i is the number of vertices.  Figure 
1 (a) is an example of the complete graph K5. 
 
 
Definition 7:   
 
The complement of graph G = (V, E), denoted  = (V, Ē), is a graph with the same set of 
vertices V such that Ē = {(u,v) : u,v є V and (u,v)  E}.  For instance, figure 1 (b) and 
Figure 1 (d) is an example of a graph and its complement. 



 

 
Result of Definition 7:   
 
Given G and its complement , then G ≈ . 
 

Figure 1: Graphs 
 

 
 

 
Now that we have some basic structures of graph theory defined, we can proceed to show 
the equivalence of definition 1 and definition 2.  A Ramsey Number, R(m,n) = r, is the 
smallest size of a graph G such that every graph of that size has either a complete 
subgraph of size m in its graph or a complete subgraph of size n in a graph consisting of 
its deleted edges. 
 
The relationship between a graph G and its complement  as it relates to cliques and 
independent sets is as follows: if a subgraph forms a clique in G, then the vertices in this 
subgraph induces an independent set in the complement of G, .  This makes our case, 
R(5,5), a bit easier to look at.  R(5,5) is therefore defined as the smallest size of a graph G 
such that there exists a clique of size 5 in its graph or its complement. 
 
 
Ramsey Theory Foundation 
 
The old joke that is often associated with Ramsey Numbers is that if an alien spaceship 
were to come to Earth and demand that we tell them the answer to R(5,5) or they will kill 
us all, it would take all the computing power in the world to find the answer for the 
aliens.  If he asks for R(6,6), we should try to kill them.  This shows how difficult this 
problem is.  Many people have been working on R(5,5) for decades and have made some 
remarkable headway.  The following few theorems gives only a small insight into some 
of their hard work.  Endös and Szekeres are given credit for proving theorem 1. [4] 
 
 
Theorem 1:  R(m,n)    ≤  
 
 
Proof: 
 
We proceed by induction on k, where k = m + n.  There is equality when m = 1 and m = 2, 
and for every value of n.  It is also true for n = 1 and n = 2, independent of the value of m.  
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Therefore, the result is true for all values of k with 2 ≤ k ≤ 5 and we proceed through the 
remainder of the proof assuming that m ≥ 3 and n ≥ 3. 
 
Assume that R(s,t) exists for all positive integers s and t with s + t < k where k ≥ 6, and 
that  
 R(s,t)   ≤  
 
Let m and n be integers such that m + n = k, where m ≥ 3 and n ≥ 3.  By the inductive 
hypothesis, the Ramsey numbers R(m-1,n) and R(m,n-1) exist and further, 
 
 R(m-1,n)   ≤ and R(m,n-1)   ≤ 
 
Since 
 
 
 
,it follows that    R(m-1,n) + R(m,n-1)   ≤  (*) 
 
Now let p = R(m-1,n) + R(m,n-1) and suppose that each edge of Kp is arbitrarily colored 
red or blue, analogous to exists or does not exist.  We show that there is either a red Km or 
a blue Kn.  Let v be a vertex of Kp.  Then the degree of v = p –1 = R(m-1,n) + R(m,n-1) –
1.  We consider two cases: 
 
Case 1.  Assume that v is incident with at least R(m-1,n) red edges.  Let S denote the set 
of vertices of Kp that are joined to v by red edges.  Thus |S| ≥ R(m-1,n) and (S) is a 
complete graph of order at least R(m-1,n) whose edges are colored red or blue.  
Therefore, (S) contains either a red Km-1 or a blue Kn.  If (S) contains a blue Kn, so does 
Kp.  Suppose that (S) contains a red Km-1.  Then (S U {v}) contains a red Km.  Hence, in 
this case, Kp contains either a red Km or a blue Kn. 
 
Case 2.  Assume that v is incident with at most R(m-1,n) –1 red edges.  Then v is incident 
with at least R(m,n-1) blue edges.  Let T denote the set of vertices of Kp that are joined to 
v by blue edges.  Therefore, |T| ≥ R(m,n-1) and (T) is a complete graph of order at least 
R(m,n-1) whose edges are colored red or blue. Hence, (T) contains either a red Km or a 
blue Kn-1.  If (T) contains a red Km, then Kp does as well.  Suppose that (T) contains a 
blue Kn-1.  Then (T U {v}) contains a blue Kn.  In this case as well, then Kp contains a red 
Km or a blue Kn. 
 
This shows that R(m,n) ≤ R(m-1,n) + R(m,n-1), which when combined with (*), gives the 
desired result. □ 
 
For our case, this theorem yields the result that R(5,5) ≤ 70.  This of course is far more 
than the current upper bound, which is 49.  The corollary to theorem 1, however gives us 
a little closer approximation to the current upper bound. [4] 
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Corollary to Theorem 1: R(m,n) ≤ R(m-1,n) + R(m,n-1); if R(m-1,n) and R(m,n-1) are 
both even, then the inequality is strict. 
 
 
Result: R(m,n) = R(n,m)  
 
The previous corollary and result used together yield a new upper bound to R(5,5) as long 
as we know R(4,5), which we know is 25. [7]  Therefore, our new upper bound to R(5,5) 
≤ 50.  Stanislaw Radziszowski and Brendan McKay in their 1992 publication A New 
Upper Bound For The Ramsey Number R(5,5) discuss the method in which they moved 
the upper bound from 50 to 49. [5]  Our goal of this project is to improve the lower bound 
of R(5,5) from 43 to 44. 
 
 
3. Approach to Finding Lower Bounds 
 
The lower bound of R(5,5) has been improved by the process of presenting counter 
examples (i.e. a graph of size r such that no clique or independent set of size 5 exist in 
that graph).  The most recent transition of the lower bound (from 42 to 43) came about 
through the use of Genetic Algorithms to search some of the graphs of size 42 for a 
counter example.  They were successful in doing so and thus, the lower bound was 
shifted to 43. [7]  This is the same approach we used in our project.  There are many 
different ways in which to go about this, all of which come down to finding a counter 
example that disproves the fact that 43 is the lower bound.   
 
 
Enumeration of all Possibilities 
 
The first and most obvious approach is to enumerate all possible graphs of size 43 and 
check if all of these graphs have a clique or independent set of size 5.  Before beginning 
to write out all possible graphs of size 43, however, lets first look at how many graphs 
exist. 
 
There are 903 possible edges in a graph with 43 vertices and each possible edge has two 
possibilities, either an edge exists or it doesn’t.  Therefore there are 2903 different possible 
graphs.  This works out to be about 6.76x10271, which are far too many graphs to 
enumerate.  Therefore this is not a feasible method. 
 
 
Genetic Algorithms 
 
The method we are going to use when it comes to searching for a counter example is 
Genetic Algorithms (GA).  Genetic algorithms are best described as a better than random, 
generational search algorithm.  It stems from Evolutionary Computation (EC) and its 
process is elaborated upon in terms of R(5,5) in the following explanation. 
 



 

 
Step 1 
 
The first step is to select a random sample of individuals from the population.  In this 
case, the population is all the different graphs of size 43 (approximately 6.76x10271).  
From this population, a sample of 250 individuals was selected.  Each individual 
represents a graph in the following manner. 
 
Since bit strings are the key data structure used in genetic algorithms, each graph is 
represented by a string of 0s and 1s (0 represents false and 1 represents true).  In this 
case, a 1 represents the existence of an edge, whereas a 0 represents the lack of an edge.  
The bit string is parsed into an incidence matrix as follows: 
 
 

Figure 2: Parsing of Bit Strings to Graphs 

 
 
 
Step 2 
 
Now that we have 250 individuals, we must conduct tournaments to see which graphs are 
better than others.  In order to conduct the tournaments, we must have a way of ranking 
or ordering all of the individuals.  This is called the fitness function.  In our case, the 
fitness function is the number of cliques of size 5 in the graph added to the number of 
cliques of size 5 in the graphs complement.  The possible fitness values for this fitness 
function range from 0 (hopefully) to 962598.  A portion of the java code for this fitness 
function is given in Appendix A.   
 
Given that each individual has a fitness value, we can now hold tournaments to determine 
what subset of the individuals in our sample are the better ones.  In our case, smaller 
numbers are better since we are looking for a graph whose fitness function yields a 0.  
The better individuals are now granted permission to produce offspring through point 
mutation and/or standard crossover.  These are relatively standard recombination 
techniques.   



 

 
Point mutation involves the random switching of bits in the bit string.  This equates to the 
removal or addition of an edge to a graph, thus creating a new graph.  Figure 3 shows an 
example of point mutation. 
 
 

Figure 3: Mutation Recombination Technique 

 
 
Standard crossover involves taking two individuals and merging them together.  This 
merge takes place at a random point in both individuals, where the new graph consists of 
everything prior to the chosen point from the first individual and everything after the 
chosen point from the second individual.  An example of this is given below: 
 
 

Figure 4: Crossover Recombination Technique 

 
 
 
Step 3 
 
Now that new offspring are formed, they replace the poorer individuals from the 
tournaments.  This is the end of one generation and the beginning of the next.   
 
Step 2 and 3 are repeated for as long as is chosen by the user.  In our case, 400 
generations was chosen because after about 400 generations the variance in the 
population got so small that there was hardly any progress being made. 
 



 

For more information regarding Evolutionary Computation and Genetic Algorithms see 
Genetic Programming~ An Introduction by Banzhaf, Nordin, Keller, and Francone. [1] 
 
 
4. Results and Analysis 
 
Over a period of 2 weeks, the genetic algorithm method described above was allowed to 
run on 15 different machines in the Computer Science Teaching Lab at the University of 
Minnesota, Morris (Sci 2610).  After the two-week period, there were 230 complete runs 
where data could be extracted and analysis of the run could take place.  Of these 230 
different runs, each run taking about 3 days to complete, 10 had a best fitness between 
1300 and 1400 while the others were larger than 1400 but smaller than 2000.  The best 
fitness value of a graph was 1300 and was taken from the 13th run on the machine labeled 
Cochrane.  The following is a graph of the fitness of that run with generation on the x-
axis. 
 
 

Figure 5: Output of Best Run 

 
 
All runs have a curve similar to this one, and that is why it is uncertain whether or not 
extending this graph to an infinite number of generations will improve the fitness to 0 or 
if it will plateau asymptotically at a larger value.  The best graph we found is given by the 
chromosome below (parsing via the method mentioned previously (Figure 2) will yield 
the appropriate incidence matrix of the graph): 
 
 



 

Figure 6: Chromosome of Best Individual 
011001110000011100100001110110000000010100110010010111110111010100111111110100011001000010011001111100101011
111000001010011101101110100101011001100110001101101000000011000010110100011111001110100010101011001110010001
110000111101000101010111100100000101110111101101011010000011000110001101001110110110111001011001101011110100
011111011010001100010100010100101011110101100010001100101111011011000010110000101001001010101000101110110111
110011101100001000100011111011101001010101111010101110011010001111000110111010011011001001011001100000000100
110010111111100010010001011010110011010101001110010100111001001011100100100100100010110011110000100101010111
110101101000001111001111101100011111001010101000010011001110100100011100101011000011100010101110011101111000
101000110001010100100111100101111011010100001100010010101011000100010101110101010111101001110000110110101001
000010011110111001100101111011100001010 
 
 

5. Conclusion 
 
It is clear that this project did not improve the lower bound of R(5,5).  However, the 
genetic algorithm method does yield interesting results and therefore might in fact 
produce a counter example.  The method we implemented could be improved by 
changing the number of generations, the population size, the recombination techniques, 
or any other of many available ‘knobs’ that can be tweaked.  This method does not 
guarantee the existence of a counter example, but instead only allows us a different way 
of looking at the problem.  With other techniques and advanced technology, the future is 
looking bright for finding a solution to this problem, or at the very least improving the 
lower bound of R(5,5) to 44. 
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Appendix A: Number of Cliques of Size 5 Algorithm 
 
/** 
 * This method is an exact algorithm that returns the number of  
 * cliques of size 5 in this graph. 
 **/ 
public int numCliquesSize5(Graph g) { 
int[] temp = new int[size]; 
 
for(int i = 0 ; i < g.getSize() ; i++) { 
    temp[i] = g.getDegree(i); 
} 
  
Graph tempG = g; 
 
int[] temp2 = new int[0]; 
 
for(int i = 0 ; i < g.getSize() ; i++) { 
    if(temp[i] >= 4) { 
 temp2 = add(temp2,i); 
    } else { 
 tempG = remove(tempG,i); 
    } 
} 
 
int out = 0; 
 
boolean[] intersect = new boolean[tempG.getSize()]; 
intersect = initAll(intersect); 
boolean[] intersect1 = new boolean[tempG.getSize()]; 
boolean[] intersect2 = new boolean[tempG.getSize()]; 
boolean[] intersect3 = new boolean[tempG.getSize()]; 
boolean[] intersect4 = new boolean[tempG.getSize()]; 
boolean[] intersect5 = new boolean[tempG.getSize()]; 
  
for(int x1 = 0 ; x1 < (temp2.length - 4) ; x1++) { 
   intersect1 = intersection(intersect, connectedList(tempG, temp2[x1])); 
     
   for(int x2 = (x1 + 1) ; x2 < (temp2.length - 3) ; x2++) { 
   intersect2 = intersection(intersect1, connectedList(tempG, temp2[x2]));   
      for(int x3 = (x2 + 1) ; x3 < (temp2.length - 2) ; x3++) { 
      intersect3 = intersection(intersect2, connectedList(tempG, temp2[x3])); 
         for(int x4 = (x3 + 1) ; x4 < (temp2.length - 1) ; x4++) { 
         intersect4 = intersection(intersect3, connectedList(tempG, temp2[x4])); 
            for(int x5 = (x4 + 1) ; x5 < temp2.length ; x5++) { 
            intersect5 = intersection(intersect4, connectedList(tempG, temp2[x5])); 
       
        if(numTrue(intersect5) > 4) { 
           out++; 
      } 
       
  } 
     } 
 }  
    } 
} 
 
return out; 
} 

 



 

Appendix B: Computer Specifications [6] 
 
Category   Description   QTY   Part Number 
Processor   Intel Pentium IIII 1.6GHz 400FSB 256K 478Pin    1   CPU002049-01 
Memory   ***512MB 64X64 133MHZ SDRAM   1   MOD001966-00 
Hard Drive   Seagate U6 20GB IDE 5400RPM    1   HDI001793-00 
CD-ROM Drive   Lite-On 52X IDE CD-ROM LTN526    1   CDI001263-01 
Video Card   Visiontek Vanta 16MB Video Card   1   VCD001472-01 
Misc I/O   Microsoft 104-Key Elite Natural Keyboard   1   KBR001062-03 
Misc I/O   Microsoft Intellimouse Optical USB and PS/2 

Compatible    1   MOU001072-01 

Case   Odyssey Client Pro PA700 front foot   1   CSE001587-00 
Case   Odyssey ATX PA700 MiniTower w/o Power 

Supply    1   CSE001638-00 

Power Supply   Delta 300W Power Supply    1   PWS001108-00 
Operating 
System   

Microsoft Windows 98 SE Recovery Media Kit  
  

1 
  

OSS001318-00 

Software   Havre - Driver CD   1   SFD001106-02 
Software   Microsoft Intellimouse Driver 3.5 in. Floppy 

(English)   1   SFO001446-07 

Software   Microsoft.Internet Explorer 5.5    1   SFO002447-00 
Warranty 

  
ASSY DESKTOP THREE-YEAR LIMITED 
PARTS WARRANTY AND TECHNICAL 
SUPPORT POLICY 

  
1 

  
WAR001049-00 

Case   Odyssey PA700 ATX MT Bezel Assembly    1   BZL001057-03 
Motherboard   Havre - Intel 845 Brookdale Motherboard 

(Millennia® Max XR and ClientPro® CR)   1   MBD001151-03 

Software   Nvidia Video Driver CD    1   MED001417-05 

 


