Design and Implementation of a virtual PunchClock

Ruchira KumarasingheT
Department of Mathematics and Computer Science
University of Wisconsin-Superior
rkumaras @students.uwsuper.edu

Victor Piotrowski
Department of Mathematics and Computer Science
University of Wisconsin-Superior
vpiotrow @uwsuper.edu

Abstract

This paper describes a software development process of a PunchClock, a .Net application
for managing timesheets of student employees. The application is based upon Windows
Forms, C# and ADO.NET. It consists of a desktop component that connects to a database
server in a secure way. The application contains basic Punch Clock functions in a user
mode, and restricted management features in an administrative mode.

" Student presenter.

Introduction

The Department of Mathematics and Computer Science at the University of Wisconsin-
Superior has been using a commercial PunchClock application to manage time sheets of
student employees. This application had a steep price tag, but, more importantly, it was
saving its data in an unencrypted, plain text file on a local hard drive. It also required a
server component to be running on a different machine.

We decided to develop our own version of the PunchClock using a new Microsoft .NET
framework, C# language, and Visual Studio .NET. All computers in UW-S student
computer labs are PC’s running Windows XP, therefore cross-platform capability was not
a concern. The power of C# language, the simplicity of developing Windows Forms in
Visual Studio .NET, and a collection of powerful objects such as ADO.NET for a
database connectivity were main reasons for choosing .NET technology. The fact that
you can convert a windows application to a web-based application with a relatively little
work was another argument for using .NET framework.

This paper describes the software development process of a .Net-based version of the
PunchClock. The application consists of a desktop module that connects to a database
server in a secure way. The application contains basic Punch Clock functions in a user
mode, and restricted management features in an administrative mode.

Requirement analysis
After analyzing the problem statement we identified the following list of problems:

1. We need to store and organize the payroll information of individual employees.
We should prevent unauthorized access to this information.

2. We need basic and advanced reporting functions to get reports for each pay period
with the number of hours each employee worked and to display contact
information of employees.

3. We need some sort of management functionality allowing to create, edit, and
delete user accounts; correct user errors; update passwords; etc.

4. The application should work in a distributed environment using secure network
connections.

Solution

To store data in a secure and reliable manner, we decided to use a relational database
hosted on MSSQL server. We decided to create a windows desktop application based on
the .NET architecture. We used .NET because of the simplicity of developing Windows
Forms in Visual Studio .NET, and a collection of powerful objects such as ADO.NET for

database connectivity. A reporting module is done in Crystal Reports which is a part of
Visual Studio .NET. We decided to use Crystal Reports because of its ability to create
professionally looking reports and the fact that our campus uses Crystal Reports as a
reporting standard due to PeopleSoft integration. PunchClock’s management
functionality is based on two privilege levels:

e User: Authorized to view her contact information, payroll reports, salary
information.

¢ Administrator: Authorized to create, edit, and delete user accounts; modify the
data; change employee passwords; print single or multiple payroll reports.

Database Design
After normalization, the database consists of four linked tables:

1. Employee Table
Employee table consists of 11 columns. These columns store the employee’s
name, a unique user name, encrypted password, role (Admin, User), phone
number, social security number (SSN), email address, last update time for the
record, and the status of the employee, whether she is logged in (Y or N). User
name is the primary key of this table.

Employee
Column Mame | Data Type |Length | Allaws Mulls |
% [USERMNAME nvarchar z0
~ |PasswoRrD E mvarchar 20
— |FIRST_MaME mvarchar 20
| MIDDLE_INITIAL char 1 v
|LAST_MaME mvarchar 20
"~ |roLe rivarchar zo
| PHONE char 10 v
 |LocED_IM char 1
T char 9 v
EMAIL rivarchar Z5
_|LAST_UPDATE_TIME datetime g 3

2. Punch Card Table

Punch_Card table contains the punch-in and -out time for every employee. The
table consists of six columns: user name; sign-in and sign-out times; the sign-in
computer name and the sign-out computer name; and the last time the record was
updated. The computer name field contains a computer name or an IP address of
the computer that was used to punch-in and punch-out. The last update time will
be used to monitor data inconsistency. User and sign-in time will be the primary
keys in this table.

! Punch_Card
Column Mame | Data Type |Length | Allow Mulls -
% |USERMNAME rvarchar z0
R [s5IEM_IN_TIME datetime &
"~ |s1Em_out_TiME datetime & W
N SIGM_IM_COMPUTER. rarchar 20
"~ |SIM_OUT_CoMPUTER mwarchar 20 W
_|LAST_UPDATE_TIME datetime &
— w

3. Salary History Table
The Salary_History table has four columns: user name, starting date, salary (rate
per hour), and the last update time. This table will keep track of the employee’s
salary over time. User and starting date fields will act as the primary keys in this

table.
SALARY_HISTORY
Colurmn Mame | Dakta Type |Leru;|th | Al Mulls | ”
i IJSERMAME revarchar 20
i STARTIMG_DATE datekime o]
| RATE_PER._HOUR, Float o]
| LAST_UPDATE_TIME datekime o]
T Lv

4. Change Log Table
The Change_lLog table keeps records of any changes made by the administrators.
The table consists of four columns: change by username (administrator’s
username), time the change was made, name of the table the change was made,
and the username of the employee the change was made to. Change by username
and the change time act as the primary keys for this table.

CHAMNGE_| OG
Colurmn Mame | DataType |Length | Allow Mulls |~
T [CHANGE_EY_LISERNAME Mrearchar 20
T | CHAMNGE_TIME daketime a
B CHANGE_TABLE_MAME rivarchar 20
T CHAMNGE_RECORD_JSERMAME rwarchar 20
w

Database Schema

PunchClock database contains the following relations:

Employee
ColrnMame | DataTyps [Length | Alow Huls | A
2 |USERMAME nvarchar 20
| |PASSWORD E nvarchar 20
_ |FIRST_MAME rvarchar 20
- MIDDLE _IMITIAL char 1 W
_ |LAST_MAME rvarchar 20
_|RoLE nvarchar 20
| |PHOME char 1o 'S
L | LOGED_IN char 1
L | S5 char 9 W
|EMaL nvarchar 25
- LAST_UPDATE_TIME datetime i .
j &
SALARY_HISTORY
| CoumnMName | DataType |Length|Alow Muls | A Punch_Card
7 | USERNAVE Pk 0 ‘ Column Mame | Data Type |Length|nllow Hulls A
9 |STARTING DATE datetime 8 7| USERNANE nyathar 20
e = T | SIGN_IN_TIME datetime g
LAST_UPDATE_TIME datetime 8 SIGN_OUT_TIME datetime 8 i
SIGN_IM_COMPUTER nwvarchar 20
v SIGN_OUT_COMPUTER. nvarchar 20 W
LAST_UPDATE_TIME datetime g
E w
CHANGE_LOG
| Column Kame | Data Type |Length | Allow Hulls | A~
7 | CHANGE_BY_LJSERNAME Trvarchar z0
[CHANGE_TIME datetime g
CHANGE_TABLE_MAME nivarchar 20
CHAMGE_RECORD_USERMAME nwarchar 20
v
Foreign Key Relationship Tables Relationship
FK_SALARY_HISTORY_USERNAME | Employee — Salary History One to Many
FK_PUNCH_CARD_USERNAME Employee — Punch Card One to Many
FK_CHANGE_LOG_USERNAME Employee — Change Log One to Many

The database may be created during an installation process. If a user selects create
database option, the application will connect to the database server and it will create the
PunchClock database as shown in a code segment below:

CREATE TAELE punchClockX.DEO. CHANGE LoOG

CHANGE BY USEFNAME
CHANGE TIME
CHANGE TAELE NAME

CHANGE RECORD TSERINLME

CONSTRATNT PE CHANGE LOG PRIMARY EEY (CHANGE BY U3IERFMNAME,

nvarchar (20) NOT NULL,
datetime NOT NULL,
nwarchar (20) NOT NULL,
nwarchar (20) NOT NULL

CHANGE TINE)

CONITRAINT FE_CHANGE LoG UIERMAME FOREIGH EEY (CHANGE BV TSERMNAME)

REFERENCES

User Interface

punchClockX.DEC. ENPLOYEE

[T3ERNAME)

The Punch clock application has a single logon screen. The screen displays usernames of
all the employees in the database and a user can login by selecting her username from the
list. The application will validate the user against the Employee table in the database and
will display the user screen or the administrator screen depending on the privilege level
of the user.

2™ punch Clock X

File Tools BEFEGM Help
™ punch Clock X

Prink My Current Pay Period

SN Help Prink My Previous Pay Period
SignIn Chrl+I 3 P M Submit Correction
ok e March 09, 2003 ‘ad ©Cptions
Exit Chrl+i

™ punch Clock X E“E]@

File BGEEN Payroll Help

Change My Password IM

T 1

Sunday, March 09, 2003
‘3 hike is punched in.

User Level Functionality

When the user is signed-in she can change her password using the Change Password
screen. She has to enter the old password and the new password. Also, she can get an
unofficial report of the current or previous pay period by selecting the appropriate options
from the payroll menu. She can also send an email to all the administrators by using the
submit correction option in the same menu.

Administrator Level Functionality

When an administrator is signed-in she can see the form with more functionality than a
regular user. She would see a list of users that are currently signed-in on the left and
signed-out on the right. She can sign-in or -out any user by selecting a username from
the list. Administrator can change an employee’s salary and add any existing employee
to the Administrators group by selecting an appropriate option from the tools menu. By
selecting Change Employee Password option form the Tools menu the administrator can
change any employee’s password. The password is encrypted and saved in the database.
The Administrator can add new employee, edit employee information, and remove
employee by selecting the options form the Tools menu.

An administrator has all the payroll functionality that a regular user has and more. She
can print official payroll information for a single or multiple employees by selecting the

Print Official Payroll and Print Multiple Official Payroll options form the Payroll menu.
When an administrator is viewing payroll information she can choose to send an email to
an employee with his payroll information. If there is an error in the payroll information
(for example, an employee forgot to sign-out) the administrator can correct it by selecting
the Edit Payroll option from the Payroll menu.

= punch Clock X

File BGEEN Pavroll Help

Change My Password =
Admin

Change Employes Password
Change Salary

Add Mew Employves
| Edit Employes Information
- Remove Emploves
Mi Pl

Add To Administrator Group
Pricvrers

Sign In

™ punch Clock X
File Tools EEWEIE Help

Print My Current Pay Period =
Print My Previous Pay Period Admin

Submit Correction

Print Official Payroll
Print Multiple Official Payroll
Edit Pawroll

Options

Sign In

Object Model

The class Employee contains the employee information and all the methods to implement
the user level functionality. The class Administrator extends the class Employee. Salary
History Class has an aggregation relationship with Employee. Employee Class has an
array of Salary History Objects. The diagram below summarizes the object design:

Employee
Fsername
Hlast_name
Hfirst_narme
FSSM
Frniddle_init
Femail
Fpassword
-phione number
His loged in
role
HlastlpdateTime
+0et Lser name()
+check password()
+et eamil address()
+OetMame()
+OEtSSM ()
+0et phone number()
+s loged anl)
+Change password()
+Horint unofficial payroll])
Horint multiple unoffcial payroll

——

+5i00 N Administrator
+5i0n outl)
+2mail correction() +change any password])

+print official payroll()
+orint rmultiple official payroll
+edit payrall()

—

. +add employee()
+edit employes infor)
Salary histo +remove employee()
-starting date +Wh0 15 loged ong)
_rate +ChangeHourlyRate()
et Fate +Add ToAdministratorGroup(
Implementation

Coding several thousand lines in C# went quite smoothly. Although it is possible to
create Windows Forms using only the command-line interface, in practice it is much
easier and faster to use Visual Studio.NET. Therefore, we generated all GUI elements in
Visual Studio Forms Designer. In addition, we had to write few SQL stored procedures
and to create data binding for several forms. Regarding performance, it seems that
MSSQL server ADO.NET data provider is about 20% faster than other data providers we
experimented with.

@0 PCY - Microsoft Visual C# .NET [design] - Administrator.cs

Fie Edit View Project Buld Debug Toos Window Help

-2 LB@ a- » Debug - - RE R

] % B ar ZZ A%%% .
Employes.cs | 4 b % || Class View - PCY 2 x
[4grCr Emplayee = [« = s-18
¥ j = A PCY ~
= =4} Py
(= public Employee ()
¢ # ¥ AboutPunchClock
this.Usernsmwe = "TBA"; = 9 AddEmployes
this.LastName = "TBA"; #-9# Bases and Inkerfaces

=@ AddEmployee()

this.Hiddlel = "TBA": 5% backButtanP3 Click{chject,5ystem. EventArgs)

this.Firsthame = "TBA": N 5% beckButtonP2_Clicktobject, System. EventArgs)
Tl S8, CTEAL 5% cancelButtonP1_Click{object, System.EventArgs)
this.Fmail = "TBA": &% canceButtonPz_Clickiohject, System Eventirgs)
this.setPassword("TBA") ; 5% cancelButtorP3_Click{object, System.EventArgs)
this.PhoneNumber = "TEA"; f® Disposeibool)
this.isLogedIn = false; = irit(y
¥ InitializeComponent()
3 nextButtonP]_Clcobject,System. EventAras)
nestButtonp2_Chckiobject,System, EventArgs)
o) public void setPassvord(string pw) &% subritButton_Click{abiect, System,EventAras)
: & backButtonP3

beckButtanP2
cancelButtonP 1

this.passiord = pw:

r +

= public bool checkPassword{string pw) canceButtorP2
: cancelButtorP3
" - e o bt COMPOnEnts
‘ 3 displayInfoPanel
,, EmaiDisplay
Administrator.cs 4px
emplrfoPans!
53 REE) | emphlameDisplay
) fhamel abel
j o FrameTextBox
//if the action fails it will return false else true &
hourlyRateLabel
5 public bool addNVewEmployee (float ratePerHour)

&% HourlyRateTextBox

{ &% HourRateDisplay

SglConnection myConnection = nev SglConnection(connect3tring);

¥ labell
SqlCommand wyCommand = new SglCommand ("addNewEmployes”, wyConnection): J ¥ lasthiameL abel

& lasthameLextBox

wyCommand . ConwandType = CormandType.StoredProcedure: g% messageP1label
&% messageP2Label
SqlParemeter parameterUsernsme = new SglParameter ("Qusernsme”, SqlDbType.MVarcChar, z0): g messageP3Label
parameterUsernsme.Value = this.Username; &# middieTlabel
myCommand . Parameters . Add | parameter Username) ; & middleITextBox
&% myEmaiLabel
SqlParameter parsmeterLastiame = new SglParameter ([last name”, SqlDbType.NVarChar, 20j; g myEmphlamel sbel
parameterlastName.¥alue = this.LastName; - ¥ myHourkatelasel

&% myPhoneLahel
&% my3shiLabel

& nextButtonP1
&% nextButtonp2
&% passwordLabel
& PasswordTextBox

e g% PhoneDisplay N
T e S, e . O, - ¢ [PMAES v el @t TR T WP -.EIJ
y

[o8 solution Explorer 3 Class View

Ready Ln 1 Col1 ch1 NS

myConmand . Parameters. Add (parameterLastiame) ;

SelParameter parameterMiddlel = new SqglParsmeter ("Bmiddle i", SglDbType.Char, 1):
parameterMiddlel.Value = this.MiddleI;
wyComwand. Parameters. Add iparameterfiddled) ;

Future Work

As of writing of this paper, we are in a testing phase and we hope to deploy a pilot
program within 4 weeks, and we plan to start a production deployment in 8 weeks.
Currently, the objective of using the PunchClock program is to automate student
timesheet’s reporting. We hope that the PunchClock database can be further integrated
with a student payroll system so the entire process will be paperless. Another objective
would be to create ASP.NET version of the PunchClock and to deploy it as a web-based
application.

The URL for this project is http://ruchira.cemert.org/punchclock.

References

1. Stiefel, Oberg. Application Development Using C# and .NET. Prentice Hall,
2002.
2. Sceppa David. ADO.NET. Microsoft Press, 2002.

