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Abstract 
 
Dependency analysis techniques used for parllelizing compilers can be used to produce 
coarse grained code for distributed memory systems such as a cluster of workstations.   
Nested for-loops provide opportunities for this coarse grained parallelization.  This paper 
describes current dependency analysis tests that can be used to identify ways for 
transforming sequential C code into parallel C code.  Methods for searching nested for-
loops and array references will be discussed as well as differences of each dependency 
test.   



1  Introduction 

Dependency analysis has predominately resided in the realm of compilers.  The goal was 
to speed performance of processes by eliminating conflicts caused by data accesses.  
These dependency analysis techniques gained popularity in parallel compilers for shared 
memory systems.  This paper is part of an on going project attempting to use existing 
dependency analysis techniques on a distributed memory system.  The purpose will be to 
convert sequential C programs into parallel C programs that can be run on a cluster of 
workstations using a message passing protocol.  One of the tenets of this project is that 
the parallel code be coarse grained as opposed to fine grained parallel code used with 
shared memory systems.  One way that coarse grained parallelization can be achieved is 
by performing transformations of loop structures.  Assuming the data dependencies found 
within the loop structures are intentional, dependency analysis will be used to catalog and 
verify that transformations do not change the algorithm.  In order to perform dependency 
analysis, information must first be gathered about the loop structures.  Once the loop 
structure information has been accumulated, it will be used to determine which 
dependency tests to perform.  Each dependency test is designed for a specific type of data 
reference found in the loops.  Pairs of data references will be compared together to 
determine if a dependency exists between them.  Some dependency tests are known as 
exact tests because they can accurately determine dependence or independence.  Due to 
the complexity of some data references, tests performed on them must use symbolic 
representations of dependencies.  The simplification of complex data references may only 
allow dependency tests to approximate dependencies.  The following paragraphs will 
describe specific dependency analysis techniques used on for loops of C code and the 
difficulties that are encountered.     

2 Classifying Data Dependencies 

A data dependence is any statement or set of statements that access the same memory 
location where at least one of the accesses is writing to that location.  There are four 
kinds of dependence that can be produced [1] [2][3][4]. To explain each start with the 
following assumption:  let 1s  and 2s  be two statements that access the same memory 

location.  Statement 1s  occurs before 2s  in the program. The order in which the access 
occurs will define specific dependencies.  Writing and reading from the two statements 
can be performed in four ways. 
 

1. True dependence:  In true dependence, sometimes called flow dependence, 1s  

writes to the memory location while 2s  reads from the memory location. 

2. Anti dependence:  In an anti dependence, 1s  reads from the memory location 

while 2s  writes to that location. 



3. Output dependence:  In an output dependence, both 1s  and 2s  write to the same 
memory location and it assumed there is no other access to that memory location 
in the time between 1s  and 2s . 

4. Input dependence:  In an input dependence, both 1s  and 2s  read from the same 
memory location.  Input dependence does not fit the definition of a data 
dependence because there is no writing involved.  However, some authors feel the 
need to mention it for completeness. 

 
It should be noted that statements 1s  and 2s  may be the same statement.  Classifying the 
dependence between two statements is important for analysis, since different 
dependencies will be parallelized in different ways.   
 
In order to classify the dependencies between two statements, an algorithm must be 
designed that will parse a set of instructions.  Optimizing software tends to focus 
attention on loop structures in program code.  Several items of information relating to the 
loop structures found in a particular set of instructions will aid in determining 
dependencies of statements.  Among these is information about the stride of each loop, 
the number of loops contained in a nested loop structure, and the level at which each 
statement resides within the loop nest. 
 
When looking at loop structures it is valuable to know the stride the loop performs for the 
iteration.  The stride value is referred to as the iteration number [3].  Knowing if the 
iteration strides in an increasing or decreasing direction will also be of value.  In figure 1, 
loop i has an iteration number of 1 and has a positive stride.  Loop j has an iteration 
number of 2 with a positive stride.  Loop k has an iteration number of 1 with a negative 
stride.   
 

Figure 1:  Nested for-loops with different strides 
 

for(i = 0; i < 10; i++) 
   for(j = 0; j < 10; j+=2) 
      for(k = 10; k > 0; k--) 
         A[0][i][j] = A[10][i][k]; 

 
When analyzing a nested loop structure, dependency tests need a way of keeping track of 
what level the statements are nested in called the nesting level [3].  Finding the nesting 
level is a simple counting.  The outer most level is considered level one and each level 
inside is counted incrementally.  Each statement will be cataloged as to which level it lies 
in the nest.  Once statements are identified in the nest, the focus will turn to how those 
statements change from iteration to iteration. 
 
Each statement lying in a nested loop structure contains an iteration vector that defines 
the iteration values of all the loops at that given point [3].  For a nest of n loops, the 
iteration vector α = { nαααα ,...,, 321 }, where kα : 1< k < n, represents the iteration 

number for the loop at nesting level k.  The set of all iteration vectors for a given 



statement is called the iteration space of the statement.  The iteration space gives a 
complete view of how memory is being accessed by a statement throughout the lifetime 
of the nested loop.  Referring to figure 1, the statements have the following iteration 
vectors:  
 
A[0][i][j] = {{0,0,0}, {0,0,2}, {0,0,4}, {0,0,8}, {0,1,0}, {0,1,2}, … ,{0,9,8}}   
 
A[10][i][k] = {{10,0,10}, {10,0,9}, {10,0,8}, {10,0,7}, {10,0,6}, … ,{10,0,1}} 
 
Notice that there is no dependency between the two statements, since the first always 
contains the constant 0 in the first array reference and the second always contains the 
value 10.  There is no possibility for the two statements to refer to the same memory 
location. 
 
Now that information has been gathered about each statement, the next step is to begin 
identifying dependencies between statements.  In a nest of loops there is a dependence 
from statement 1s  to 2s  such that α = β where α is a particular iteration vector for 1s  and 

β is a particular iteration vector for 2s [3].  Thus statement 1s  accesses a memory location 

on iteration vector α and 2s  accesses the same memory location on iteration vector β.  It 
would be possible perform comparisons between each iteration vector for two statements, 
but may take a very long time for loops of any significant size.  In fact, if the loop 
structures are of a size that would be worth parallelizing, then performing a one to one 
comparison for each iteration vector will be ridiculously long. 
 
One way to lessen the computation is to view iteration vectors in a more abstract way.     
When a loop dependence occurs between iteration vectors α and β, then the distance 
between them is defined as the distance vector d(α , β ), which is the difference between 
the two vectors [3]. 
 

kkk αββα −=)  ,  (d . 

 
After obtaining the distance vector, the values can be further abstracted to a set of 
symbols representing the three directions.  The direction vector D( α , β ) is defined as: 
 
    “<” if 0)  ,  (d >kβα      

D(α , β ) =  “=” if 0) ,  d( =kβα       

     “>” if 0) ,  d( <kβα  

 
These symbols will be used to verify that transformations performed allow dependencies 
to be maintained.  For example: 
 

        A[i + 1][j][k - 1] = A[i][j][k]; 
 



The distance and direction vectors will be  (1,0,1) or (<,=,>).  The type of dependence 
should still exist after the transformation to parallel code otherwise the algorithm has 
changed and may produce incorrect results.   
 
As mentioned earlier, the dependence between two statements occurs when both of them 
access the same memory location and at least one of them writes to that location.  When 
considering loop structures, the dependency between two statements may occur in the 
same iteration or separate iterations of a loop.  If the dependency is found in the same 
iteration of the loop it is called a loop-independent dependence [3].  For example: if 1s  

and 2s  are two statements in the same level of a loop and both access memory location M 
during that iteration of the loop.  Then on the next iteration, both statements will access a 
new memory location N.  Since the iteration does not access any memory locations from 
previous iterations, the iteration is independent of all others.  A loop-carried dependence 
[3] occurs when a statement accesses a memory location and then on another iteration 
there is a second access of that memory location.  Thus, 1s  will access memory location 

M and then on a subsequent iteration 2s  will also access memory location M.  Again, 1s  

and 2s  may be the same statement where one is a write and one is a read. 

3 Simple dependency tests 

In describing variables in nested loop structures, there are two common terms index and 
subscript [2][3].  The index is a variable that is used in loop structures to iterate the loop.  
Indices are commonly used in array references and will be the focus of many of the 
dependency analysis algorithms.  When an index is used in array reference, it is called a 
subscript.  For example, a two dimensional array A[i][j], there are two subscripts. 
Assuming the array reference is nested in a double loop with index variables i and j.  
Much of the difficulty in dependency analysis is determining if the subscripts of two 
array references match. 
 
To expand on the focus of indices and subscripts will be the question of how many 
indices are found in the subscripts of an array reference?  The number of indices will be 
called the complexity of the array [2][3].  There are three levels of complexity that are 
commonly used for dependency analysis.  The first is the zero index variable (ZIV).  A 
ZIV is an array reference, which does not use index variables in a particular subscript 
pair.  The second is the single index variable (SIV).  The SIV uses one index variable in a 
particular subscript pair of an array references.  Finally, the third is called the multiple 
index variable (MIV).  The MIV occurs when more than one index variable is reference 
in a particular subscript.  Note that any pair of multi-dimensional array references may 
contain any one or several complexity values in the subscripts.  For example, the nested 
loop mentioned above in figure 1 contains a ZIV in the first subscript, a SIV in the 
second subscript and a MIV in the third subscript.  There are different dependency tests 
that are performed for ZIV, SIV, and MIV subscripts.   
 
In addition to knowing the complexity of subscripts, the separability of the subscripts 
will need to be known [2][3].  A subscript pair is separable if all the indices used in it are 



exclusive to that subscript.  If any two different subscript pairs share an index variable, 
then those subscripts are considered coupled.  For example:    
 

         A[i][j][j] = A[i][j][k];      
 
The first subscript is separable because it only contains the index i, but the second and 
third are coupled because they share the variable j.  Before dependency testing can begin, 
a pair of array references must be broken into separable and minimally coupled 
subscripts.   For the separable subscripts, there are methods of getting exact answers from 
dependency tests.  Due to complexity, coupled subscripts have more difficulty in finding 
exact answers.  In the event that an exact answer cannot be determined, a more 
conservative ruling will be made.  There is the potential that a dependency may be 
detected that does not really exist.  However, the opposite is not true.  Dependency tests 
do not declare independence between subscripts when one really exists.  

3.1 Testing for ZIV 

One of the simplest dependency analysis tests is to compare a pair of subscripts that 
contain no index variables.  Referring to figure 1, subscripts 0 and 10 will be tested for 
ZIV.  Since these subscripts hold integer values they can easily be compared by 
subtraction.  If the difference is non-zero there is no dependency.  If the subscripts held 
variables, then either the value of the variables are known at runtime or they are 
unknown.  If the variables are known, the test can compare the values similarly by taking 
the difference.  If they are unknown, then there are two possible situations.  One is that 
the same variable is used in both subscripts and may have an arithmetic operator 
associated with it.  A symbolic comparison of the variables can be made to verify they 
differ by an arithmetic operator.  Otherwise one or both variables are initialized at 
runtime and a conservative approach is made to assume they are the same value, because 
it cannot be proven they are different. 

3.2 Testing for SIV 

SIV tests may be divided into several sub-categories based on information associated 
with the common index of a subscript pair.  An index may be combined with a number or 
variable through an arithmetic operator in a subscript.  SIV subscripts can be viewed as 
linear expressions of the form: cai + , where a and c are either numbers or variables 
representing numbers and i is the index.  A pair of subscripts can be written as two linear 
functions:  11)( ciaif +=  and 22)( ciaig += .  Because these are linear, they can be 
plotted as lines in a rectangular coordinate system.   
 
The two major classifications of SIV subscript pairs will be parallel lines, or strong SIV 
subscripts, and non-parallel lines, or weak SIV subscripts[2][3].  Weak SIV testing may 
be further divided into sub-categories that will be mentioned later.  Note that the lines 
displayed graphically represent more than the actual data references.  The only locations 
of concern are points on the lines that actually have integer coordinates since subscripts 



must be integer values.  Dependencies occur between the two lines only when there exists 
a horizontal line that can intersect both subscript lines and find integer coordinates at 
those intersections.  The horizontal line test is the equivalent of finding two references to 
the same memory location.   

3.2.1 Strong SIV test 

The strong SIV test is for comparing two subscripts that contain an index i of the form 

11 cia +  and 22 cia + .  Since these can be represented as parallel lines, they have the same 

slope or 21 aa = .  The dependence distance between the two lines is merely the difference 
between any two points intersected by a horizontal line.  The horizontal difference can be 
calculated by the finding the intercepts of the horizontal axis.   
 
Using the equations    11)( ciaif +=        and        21)( ciaig += ,  
 

the horizontal intercepts are             
1

1

a
c

−           and          
1

2
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The difference between them is           
1

21

a

cc
d

−
= ,  

 
where d is the dependence distance[3].  A dependence exists only if d is an integer and   
|d| < U – L , where U and L are the upper and lower bounds of the index I, see diagram 1.  
If the dependency exists then it will be classified as <, >, or = by the value of d compared 
to zero.   
 

Diagram 1:  Strong SIV test 
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3.2.2 Weak SIV tests 

The weak SIV test occurs when the two subscripts in question have values that form 
intersecting lines.  For subscripts 11 cia +  and 22 cia + , 21 aa ≠  or the slopes of the lines 
are not the same [3].  There are a couple special cases of weak SIVs that are easy to test 



for dependencies.  These include the scenario where one of the subscripts forms a 
horizontal line called a weak-zero SIV subscript.  The other special case is when the 
subscripts form lines that have negative slopes of each other called the weak crossing SIV 
subscripts.  Both of these cases have fast algorithms for determining dependence.  If the 
subscripts don’t fall into one of these categories, they must undergo the more expensive 
exact SIV test. 

3.2.3 Weak-zero SIV test 

The weak-zero SIV test is for comparing two subscripts where only one contains an index 
variable.  The general form of the subscripts is 11 cia +  and  22 cia + , where either 01 =a  

or 02 =a .  The expressions can form two linear functions where one is a horizontal line 
and the other is non-horizontal.  If the intersection of the two lines has integer coordinate 
for i and that location is within the lower and upper bounds of the index, there is a 
dependency, see diagram 2.  Assuming that 02 =a , dependency can be calculated by the 
expression  
 

                                            
1

21

a
cc

i
−

=           [3].  

 
Weak-zero dependencies have great potential for parallelization because only one 
location actually has a dependency and which can treated as a special case outside the 
loop. 
 

Diagram 2: Weak-zero SIV test 
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3.2.4 Weak-crossing SIV test 

The weak-crossing SIV test is the situation where the subscript pair contains a common 
index but each is the negative of the other.  The general form is the expressions 11 cia +  

and 22 cia + with 21 aa −=  [3].  Represented as functions produces two lines that are 
mirror images of each other reflected about a vertical line passing through the 
intersection of the lines.  The point at which they intersect is the location of interest.  If 



the intersection point has integer coordinates or the horizontal coordinate is half way 
between two integer values, then there are dependencies to identify. As before, the 
dependencies must occur between the lower and upper limit to be valid, see diagram 3.   
Two dependencies may be found.  One will be a flow dependency and the other anti-
dependency with a change from one to the other at the point of intersection.   
 

Diagram 3:  Weak-crossing SIV test 
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3.2.5 Exact SIV testing 

When none of the previously mentioned techniques apply to SIV subscripts, it is 
necessary to implement the exact SIV test.  The test is possible by finding all the 
solutions to linear diophantine equations.  A linear diophantine equation in two variables 
is one of the form ax + by = c, where a, b, and c are integers.   
 
Given the subscript pair:      11 cia +  and 22 cia +   
 
Re-label as:          cax +  and dby +  
 
Now the subscripts will be set equal to each other.    cax + = dby +  
 
Changed the order to produce a diophantine equation.   cdbyax −=−    
 
Find the greatest common denominator between a and b,  gcd(a,b) = g.     
 

Divide the equation by g.     
g

cd
g
by

g
ax −

=−    

 
Since g divides a and g divides b, then a/g and b/g are integers.  If (d-c)/g is also an 
integer, then there are integer solutions to x and y which will indicate dependencies.  
Finding those dependencies requires knowing the linear combination:  
 

 gbnan ba =+ .   

 



The greatest common denominator and linear combination can be calculated using the 
Euclidean Algorithm.  Finally, the following equations can be derived:   
 

g
c

k
g

cd
nx ak +







 −
=        and       

g
d

k
g

cd
ny bk −







 −
=                   [3].   

 
The variables kx  and ky  are specific solutions of the index i where there is a dependency 

between the subscripts.  The variable k is any integer value and guarantees the 
dependence will occur for the subscript pair at that value.  There are an infinite number of 
values of k that can be used, but the only ones of concern will be those that provide 
solutions kx  and ky  within the boundaries of the loop.  It is possible that dependencies 

will only exist outside the boundaries.  Testing for values within the lower and upper 
boundaries will tell if a dependency truly exists.  The exact SIV test requires much more 
work to be certain of dependencies, but has the advantage of identifying all dependencies 
for linear SIV subscripts.   

3.3 Testing for MIV 

A MIV is any subscript pair that contains more than one index.  For example: 
 

Figure 2: MIV in a single subscript 
 

for(i = 0; i < 5; i++) 
   for(j = 0; j < 5; j++) 
      A[i] = A[j]; 
 
 

There are multiple occurrences of dependencies that take place on different iterations of 
the outer loop, see diagram 4.  However, it is not as obvious to derive the linear equations 
for A[i] using techniques mentioned previously.  Use of Diophantine equations also 
becomes difficult or computational expensive with multiple variables.  One of the desires 
of dependency analysis is to avoid having to test every possible scenario between the 
subscripts in question.   There are several dependency tests that have been designed 
specifically for MIV subscripts.  This paper will cover some of the basic concepts.  
 
The subscripts described in the figure 2 are known as Restricted Double Index Variables 
(RDIV).  The general form for RDIV subscripts is 11 cia +  and 22 cja +   [2][3].   Since 
both subscripts are linear expressions, testing for dependencies in the RDIV is similar to 
the tests described for SIV.  The RDIV test utilizes information about loop boundaries to 
augment the SIV tests. 
 

Diagram 4:  RDIV dependencies on different iterations 
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3.3.1 The Banerjee GCD test 

The greatest common denominator test (GCD) is based on forming affine functions out 
of multiple index subscripts.   
 
Let         )],...,,([ 321 nxxxxfA      and     )],...,,([ 321 nyyyygA       be MIV subscripts.   

 
Then         nnn xaxaaxxxf +++= ...),...,,( 11021   

 
and           nnn ybybbyyyg +++= ...),...,,( 11021 .   

 
These functions can be combined to form a Diophantine equation  
 
                  001111 ... baybxaybxa nnnn −=−++−                  [3].   

 
If the  gcd ),...,,,...,( 11 nn bbaa  can divide 00 ba −   then there is a dependency somewhere.  

However, the dependency may not be in the bounds of the array, so further testing will be 
needed.  Also, it is not uncommon for the gcd of several numbers to be one, which 
divides everything.  Thus the GCD test alone is not always exact.  One way to improve 
the GCD test is to use Banerjee Inequalities.  This technique abstracts the corresponding 
coefficients of the affine functions to inequality symbols described for dependence 
directions.  These dependence directions can be formed into direction vectors and will be 
compared to 00 ba −  to determine in which loop the dependence occurs.  The details of 

Banerjee GCD method are lengthy and will not be explained in this paper.  The Banerjee 
GCD test is one of the oldest tests and is unofficially used as a benchmark by which 
many other MIV tests are compared. 

3.3.2 The Delta test 

One MIV test that is compared to the Banerjee GCD test is called the Delta test [2][3].  
The Delta test is able to take constraints of SIV subscripts and incorporate them into MIV 



subscripts with the hope of eliminating a common index.  The MIV subscript may be 
reduced to a SIV or at the very least a less complex MIV.  For example: 
 

Figure 3: MIV in coupled subscripts 
 

for(i = 0; i < 5; i++) 
   for(j = 0; j < 5; j++) 
      A[i + 1][i + j] = A[i][i + j]; 

 
The first subscript pair contains only the index i.  Analyzing the first pair by the strong 
SIV test produces a dependence distance of 1.  Now the Delta test will take the first 
subscript and subtract it from the second for both array references.   
 
On the left hand side   (i + j) - (i + 1) = (j - 1).   
 
On the right hand side  (i + j) - (i) = (j).   
 
Thus the second subscripts have been reduced to (j – 1) and (j). 
 
The second subscripts can now be analyzed with the strong SIV test producing a 
dependence distance of  –1.  The distance vector of the two will be d(1,-1).  The method 
of incorporating a subscript into another subscript is called propagating constraints.  If 
the index that is propagated is completely eliminated from the subscripts, the Delta test 
will produce exact results.  If the index cannot be completely eliminated, then at least the 
complexity has been reduced which will aid other MIV tests. 

3.3.3 Other MIV tests 

There are many other MIV tests that have been developed.  Each has unique advantages 
and disadvantages.  Some use the divide and conquer approach where subscripts are 
divided into separable and minimally coupled groups.  However, analyzing subscripts 
individually and combining may produce false dependencies between subscripts.  Other 
techniques try to overcome false dependencies by analyzing all the subscript pairs 
together, which adds computational complexity and expense.  In an attempt to ease 
calculations and performance time, some tests abstract the elements of each subscript.  
Abstraction may also lead to less accurate results.  Tests that are not exact are classified 
as approximate tests.  Some of the MIV tests that are worth mentioning are the Fourier-
Motzkin Elimination test, the Constraint-Matrix test, the λ-test, the Power test, the I-test 
and finally the Omega test [2][3][5][6].  These tests will be looked at in the future as part 
of the on going project. 

4 Conclusion 

This paper has described what data dependencies are and how they are detected in for-
loops.  In order for statements to be analyzed, information about the loops they are nested 



in must first be gathered. This information is used to determine the types of data 
references contained in the statements.  Often data references are arrays and the 
subscripts found in the arrays are the focus of most dependency analysis tests.  Some of 
the dependency analysis tests are able to exactly determine if a dependency exists.  Other 
tests use abstraction as a way of simplifying the analysis and may only produce 
approximate answers.  The purpose of studying these dependency analysis techniques is 
to incorporate them into an automatic parallelization tool that will transform sequential C 
code into parallel C code that can be executed on a cluster of workstations.  This 
parallelization will need to be coarse grained, but must maintain the dependencies that are 
inherent to the sequential version.  Dependency analysis is the key to finding this coarse 
grained parallelization. 
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