Evolving Evolutionary Tree Computation

Ross Penna
Bemidji State University
ross_penna@yahoo.com

Abstract

The need for computational analysis on evolutionary hypotheses (trees) has
created the need for a set of classes for representing evolutionary trees. This
paper describes a new collection of classes based upon a previously developed set
of classes [1]. The new classes were developed using the object-oriented
paradigm to provide a flexible basis for manipulating evolutionary trees,
especially in large numbers. To demonstrate the classes, two applications,
treefilter and NNI, were also developed. These tree-based applications are used to
ascertain the interrelationships among groups of trees.



Introduction

With the progress in the fields of molecular biology and genomics, nucleotide
sequence data is becoming a common data set for computational analysis.
Programs, like TrEXML [2] and others mentioned in that paper, have been
developed that are capable of creating large numbers of evolutionary hypotheses
from this sequence data. These hypotheses are represented as evolutionary trees.
Due to their hypothetical nature, computational methods for the analysis of trees
are needed. This project intends to support such computations. A set of base
classes was developed to allow an object to acquire the traits of a hypothesis, or
tree. The development is intended to be flexible as the classes allow for several
different representations of the tree, supporting computation in different ways.
However, the standard and most common representation, or format, for the trees
is a comma-delimited, parenthesis-grouped string of species names, often called a
topology. The TrExML program, and others like it, produces trees in this form.
This representation, the bifurcating structure, and the ID representation form the
essence of the base classes, which are described next. Descriptions of treefilter, a
program for finding and removing duplicates from a file of trees, and NNI, a
program for computing all of the nearest neighbor interchanges of a tree, follow
the base classes’ discussion.

Base classes

The purpose of the base classes is to provide fundamental representations for an
evolutionary tree. In doing so, the standard representation is taken and
manipulated to create the other forms that are more conducive to computation.
The classes were developed with an object-oriented methodology in C++ and
drew from a set of previously developed tree classes [1]. Throughout the
discussion on the base classes, the topology (4,B,(C,D)) will be used as an
example.

intMap object

The first base class, which is a significant departure from the original
implementation of trees, is the implementation of the intMap object. The purpose
of an intMap object is to introduce a compact, uniform naming convention. It
replaces the species names with integers. The object creates a mapping between
the species names and a set of integers. The mappings were originally stored
internally as a static private data member in each tree object, so that any workings
of the intMap object were dealt with in the tree object. The decoupling of the
intMap object from the tree object allows for the processing of trees on different
species with in the same program.



intMap class

The two main functions in the intMap class support fast lookup of a species name
given an integer, and vice versa. There also exists a function to print out the list
of integers and the species that they index in the format

Index: species name

The printed index is primarily used for debugging purposes. For the example
topology, the mapping printout would look like:

w N o
o QW

ID object

Another base class that diverges considerably from the original implementation is
the ID class. The ID, like the intMap object, was stored internally in the tree
object, and was therefore tightly coupled with the tree’s implementation. The ID
object generates a representation based on a canonical ordering of evolutionary
trees. It is the ID of a tree that is used in determining equality and other relational
operations. The ID object is constructed from the standard representation of a tree
where the species names have been replaced with integers (obtained from the
intMap mapping).

ID creation algorithm

An ID is an ordering of the integers, unique to each unique tree, constructed by an
ordered replacement of leaf pairs in the bifurcating structure until only three
leaves remain. Because of the destructive nature of the algorithm, it is performed
on its own copy of the tree’s bifurcating structure. The Standard Template
Library pair structure was used to support the ID creation. The algorithm takes
the bifurcating structure and identifies each of the existing leaf pairs, and then
stores each in a pair structure. The pair structures are ordered in ascending order
based on the larger of the two leaf values in each pair. The first, or smallest pair
is replaced in the structure by a new leaf. The pair is then added to the ID and
removed from the list of pairs. In replacing the pair, the node holding it is deleted
from the bifurcating structure. If adding the new leaf creates a new pair, this pair
is added to the list of pairs. This process continues until the only remaining node
in the structure is the rootTopoNode.



ID class

The ID class includes functions for copying and printing an ID, relational
operators for comparing IDs, and a method to return the size of an ID. IDs are
printed as a simple, parentheses-enclosed, comma-separated string of integers.
For the example topology, the ID would be displayed as

(0,1,2,3).

bifurcating structure object

Evolutionary trees are typically treated as unrooted, as in figure 1.

- -,_\ .-"-_
oo
— \,/ o

o ¥ N
|
(C ] (\1} )
u, _n""l -\._.-"I-Ill

Figure 1: evolutionary tree

A, B, C, and D are subtrees with a minimum of one leaf. The notion of a root
node is introduced as a convenience, giving the computational algorithms a
starting place in the tree. The topoNode object, along with the rootTopoNode
object, implements the bifurcating structure representation of an evolutionary tree.
The new implementation differs little from the original. As with the original,
each node in the structure has three neighbors. Maintaining this structure
invariant in the root requires the rootTopoNode object. The invariant also makes
the choice for the root node of the tree arbitrary. The bifurcating structure is
useful for several immediate concerns, including the construction of the ID of a
tree and the NNI operation. For the example topology, the structure would be:

ot
.I

1
T 1

2 3

T 1

Figure 2: bifurcating structure

topoNode and rootTopoNode classes

Each topoNode in the bifurcating structure represents an internal node in the
evolutionary tree. A topoNode has four data members: IName, rName, IChild,
and rChild (figure 3).



| N
IChild / \rChild

Figure 3: topoNode structure

Both IName and rName are integers that correspond to species names via the
aforementioned intMap object. Each node is maintained such that IName <
rName, thus creating an invariant for the topoNode class. The IChild and rChild
are pointers to other topoNodes. From this perspective, the structure imitates a
standard binary tree, however, it is in the rootTopoNode that the structures are set
apart. The rootTopoNode (figure 4) is actually a specialized topoNode in that it
has the same data members, but adds mName and mChild.

IName miName riName

/ | N

lChild/ mChild

Figure 4: rootTopoNode structure

The relationship between mName and mChild is identical to those in the
topoNode class. Also similar to the topoNode class is the invariant that IName <
mName < rName. The three pairs of data members allow the representation of
the chosen root node to maintain the structure invariant (each node has three
neighbors). This set of classes is considerably larger than the other base classes,
providing functions for manipulating each of the data members, in addition to
finding the parent of a node that contains a given pair of integers. The latter also
allows for deleting that Child that contains the pair and replacing the
corresponding Name with a new name (this function is for use in the ID creation
algorithm).

tree object

The tree object is used to represent evolutionary trees for computational purposes
and is implemented in the tree class. It brings the different representations of a
tree into a single object. Along with the ID and the bifurcating structure, the
object contains the topology, and a similar representation with integers in-place of
the names. All representations, aside from the common string representation, are
constructed using the intMap-referenced integers for the species names. By
maintaining each of the representations, the tree object allows for computation on



trees in several different ways. Some computations are easier or more logical to
implement using representations other than the topology.

tree class

The tree class contains five data members: a pointer to the bifurcating structure
representation, a pointer to the ID representation, the topology, the string
representation with integers, and the number of leaves in the tree. The
constructors for the tree class, aside from the default constructor, all require an
intMap object pointer as a parameter. The default constructor has an empty
implementation due to the need for a common intMap object. By maintaining a
common intMap object, external to the tree object, many trees may share a similar
mapping. This is essential when comparing trees. Trees using different mappings
can give incorrect results when dealing with equality and other relational
operations because the relationships are based on the IDs, which are computed
from the mapped integers from the intMap object. The tree class supports
relational operators as well as methods for accessing each representation and
printing the topology.

ftree object

The tree object represents the essence of an evolutionary tree and is useful for
performing computations on a single tree. However, the ftree object is needed for
processing an entire file of trees. An ftree object is a tree object that contains
additional information necessary for performing computations on the relationships
among trees in a file. This information includes its relative position in the file, as
well as the positions of other topologies in the file that represent the same tree.

ftree class

The ftree class is implemented as a descendent of the tree class. However, the
ftree class includes data members to hold the position of the tree in a file and a list
of the positions of all the trees in the file that are identical to it. The additional
functions in the ftree class support accessing and manipulation of the new data
members. In the original implementation, the tree class held the data members
and functions of both tree and ftree classes. However, neither the file position nor
the list of identical trees is essential to the fundamental nature of an evolutionary
tree. Rather, they are merely pieces of data utilized in the computation of trees in
a set of specific family of applications, primarily those that deal with the
interrelationship of multiple trees within a file.



Tree-based applications

With the development of the base classes, applications can be constructed that
allow computations to be performed on trees. One area of tree computation
focuses on the interrelationship of multiple trees.

treefilter

One such tree-based application that deals with interrelationships is the treefilter
program. The treefilter program is used to process a file of trees and find each
unique tree. The program uses a common intMap object for all trees in the file
and tracks each tree’s relative position.

input and computation

The input file consists of a series of topologies, terminated by a semicolon. The
program reads in each topology and uses it along with the common intMap object
and the position of the topology in the file to construct an ftree object. The new
ftree object is then compared against the set of ftree objects already extracted
from the file to find a match. If a match is found, the position of the new object is
added to the matching objects list of identical trees. If a match is not found, the
new ftree object is inserted into the set of extracted trees.

output

Once the file has been completely processed, the program writes the appropriate
output files. The options for output files include files with extensions of .unique,
references, and .frequencies. The file with the .unique extension is a default
output and always written. Each unique tree’s topology is printed in this file. The
frequencies file is also default, but can be prevented from being written by using
the —f option in command line. This file gives the position in the file of each of
the unique trees, along with the number of occurrences of each in the file. Unlike
the previous two, the .references file is not written by default. However, the —r
option in the command line enables the writing of the file. The .references lists
each unique topology along with its position in the file. This file is necessary for
meaningful analysis of the .frequencies file, in that the file positions mean nothing
without knowing which tree each position refers to.

NNI (Nearest Neighbor Interchange)

The NNI program is another in the family of applications that deal with the
interrelationships of files of trees, but it is much more computationally intense



than treefilter. Typically, the nearest neighbor interchange method is used as a
metric for measuring how similar or dissimilar two trees are. The degree of
similarity is based on the distance between two trees, or how many nearest
neighbor interchanges are required to transform one tree into the other. However,
this program looks specifically for those pairs of trees that are precisely one
nearest neighbor interchange apart.

nearest neighbor interchange algorithm

The first step in the nearest neighbor interchange is locating an internal edge. An
internal edge is an edge on which there are four adjacent subtrees (figure 5).

O

Figure 5: internal edge of an evolutionary tree

Then, a subtree (A) is selected from one end and a subtree (B) is selected from the
opposite end, and they are swapped. For each internal edge, there are two
possible nearest neighbor interchanges, A and B, and A and D. C and A are
interchangeable, as are B and D, and result in an identical tree when switched.

input and computation

The input file for NNI is of the same format as treefilter. In fact, NNI utilizes a
function similar to treefilter to extract the unique trees from the file — instead of
writing the trees to files as treefilter does; the function returns a set of pointers to
ftree objects. Once all the trees have been extracted from the file, the program
computes all possible NNIs for each tree and stores them. Then, for each
computed NNI, the original trees are searched for a match. If a match is found,
then the matching tree is said to be one nearest neighbor interchange away from
the original tree. The object of the NNI program is to discover all such
relationships among the trees.

output
The NNI program writes output to two different files. One file is the .nni file, and

this file contains a graph that displays the trees that are a single nearest neighbor
interchange apart (figure 6).



oUW NP
= e e

1
[e))
Ne Ne e e Ne N

Figure 6: graph of trees one NNI apart

For example, in figure 6, the first tree in the file is one NNI away from the second
and third trees in the file. The second file has an extension of .nnireference. Like
the treefilter .references file, this file contains the topology of each tree, preceded
by its position in the file. This file serves the same purpose for the .nni file as the
references file served for the .frequencies file in treefilter.

Implementation improvements

The goals for rewriting the base classes and the applications were two-fold. The
first objective was to increase flexibility by utilizing object-oriented design
principles in the redesigning of the classes and applications. The second was to
reduce runtimes and improve the reliability of the software by utilizing both
intuitive improvements and efficient data structures.

object-oriented programming

By utilizing object-oriented design and programming techniques, such as
inheritance and delegation, the classes were made more reliable, maintainable,
robust, and extensible. With the isolation of objects into separate classes, the
coding is more extensible and robust in that each class is only responsible for a
certain object; each class is more intuitive and easier to reuse. The code has
proven to be more reliable by successfully processing input that caused errors in
the original implementation. The maintainability has improved by virtue of
making error tracking and correction easier via the functionally separate modules
of code. The object-oriented approach is most evident in the base classes.
Originally, what are now the intMap and ID objects were imbedded in the tree
object. However, by creating them as separate objects, their implementation is
decoupled from the implementation of trees. The decoupling allows trees to
delegate the responsibilities for creating and using a valid intMap or ID object to
the intMap or ID class respectively. This delegation improves the reliability of
the objects created due to the creation process being autonomous. It is not
affected by operations irrelevant to the object that are executed in the tree class
because the object’s value can only be affected by the provided class functions.
The class functions do not allow for operations that compromise the integrity of
the object once it is created, and the creation operations have built in error
checking. Another object-oriented induced change was the development of the



ftree class. By using inheritance to develop a subclass that was useful for
computations involving a file of trees, the ftree class, the tree class is able to
maintain the qualities that define an evolutionary tree and only those qualities.

Another feature of the object-oriented methodology exploited was the reusing of
code. Primarily, this involved using the Standard Template Library for data
structures and algorithms instead of creating new ones. The three most significant
examples were using the set and algorithm classes and the pair structure. In using
these, the implementation is more reliable in that these pieces of code are
thoroughly tried and tested.

data structure efficiency

The second purpose was to utilize data structures and algorithms to reduce
computation and overall execution times. This was accomplished in several
classes and both treefilter and NNI in a couple of different ways. In the treefilter
and NNI applications, vector usage was replaced with sets. In the original
implementations, the vectors were filled, then sorted, and finally searched. The
sorting operation, which runs in O(N Log N) time, dominates the collection of
operations. By utilizing sets, the filling and sorting operations were combined
into a single operation and the use of the binary search algorithm is forced,
resulting in a collection of operations also running in O(N Log N) time. While
this appears to be the same as the previous analysis, the new operations execute in
less time due to the combining of the two operations. Another example of
utilizing data structures to decrease runtime was the use of a (min) heap (a priority
queue from the STL) in the ID class implementation to hold the pairs. Because
the ID creation algorithm was based on always consuming the smallest leaf pair
available, the ability to retrieve the smallest item in constant time is advantageous.
Additionally, allowing for removing and inserting values in O(Log N) time,
giving an overall runtime in O(N Log N), made the heap ideal. Originally
implemented as a list, the pair operations were dominated by the sorting
algorithm, which ran in O(N Log N) time. Again, the combining of the insertion
and sorting operations results in faster runtimes.

Closing

Biological data in the form of DNA or RNA nucleotide sequences is often used to
organize species in evolutionary trees that provide hypotheses for the possible
evolutionary relationships among the species. To support computational methods
on these hypotheses (or trees), a set of base classes was developed. By applying
object-oriented software development techniques and improving data structure
efficiency in the redevelopment, the software is more robust, maintainable,
secure, reliable, and extensible. Nevertheless, object-oriented coding does lead to
some quirky situations, such as the lack of a (min) heap implementation in the



STL. Although there is a priority queue adapter class, utilizing it forces the heap
to be a max heap. Overcoming issues such as this sometimes leads to peculiar
coding, such as the reversing of the relational operators (except for equality and
inequality) for the pairs in the ID class. Another difficulty faced in the
development of the base classes is the foreknowledge of a particular application
(or applications) that would utilize the classes. Often, coding would start to
become tailored to the specific uses of those programs. Tailored coding severely
degrades the reusability, robustness, and extensibility of the code, all of which are
paradigms of object-oriented programming and aspirations of this project. Future
goals include adding additional error checking and handling to the base classes, as
well as further application development. To obtain the software, visit
http://whitetail.bemidjistate.edu/software]



http://whitetail.bemidjistate.edu/software

References

1. Wolf, Marty J. (1999). tree.h, tree.cc, topoNode.h, topoNode.cc, options.h,
options.cc, treefilter.h, treefilter.cc [Computer Software]. Bemidji, MN.

2. Wolf, Marty J., Easteal, Simon, Kahn, Margaret, McKay, Brendan D., Jermiin,

Lars S. (2000) TrExML-a maximum-likelihood program for extensive
tree-space exploration. Bioinformatics 16: 383-394

Acknowledgements

For his assistance in the code-development stage as well as the preparations of
these materials, I would like to thank Marty Wolf.



	Abstract
	Introduction
	Base classes
	Tree-based applications
	Implementation improvements
	Closing
	References
	2. Wolf, Marty J., Easteal, Simon, Kahn, Margaret, McKay, Brendan D., Jermiin, Lars S. (2000) TrExML-a maximum-likelihood program for extensive tree-space exploration. Bioinformatics 16: 383-394
	Acknowledgements

