Performance of Two Algorithms In Minimum
Sum of Diameters Clustering

Zubair Noman
Department of Computer Science
St. Cloud State University
znoman@eeyor e.stcloudstate.edu

Mynul Khan
Department of Computer Science
St. Cloud State University
mkhan@eeyor e.stcloudstate.edu

Abstract:

Minimum sum of diameters clustering can be solved by reduction to determination of the
sidfiability of a2- Conjunctive Norma Form or 2-SAT statement. Hansen provided an
dgorithm that solved O(nlogn) 2- SAT instances and ran with time complexity O(n*logn)
on agraph of sze n. Sarnath provided an improved dynamic digrgph agorithm that
solved O(m) 2-SAT ingtances on a graph with m edges and ran with time complexity
O(n). Algorithms were implemented to partition instances of a complete graph having
n=50 to n=500 vertices where al the vertices are connected with each other. In tests of
the two agorithms, the Sarnath agorithm consstently performed better to find the edges
of largest length of two dugters such that the sum is minimized.

1 Introduction:

A generd question facing researchers in many areas of inquiry is how to organize
observed data into meaningful structures, that is, to develop taxonomies. Clustering of
data hel ps to solve this problem by partitioning large sets of datainto clusters of smdler
sets of smilar data. Clustering of data can be donein different ways. Most often the
difference between a pair of entitiesis consdered to partition the entire data set [1]. The
maximum dissmilarity between any two entities within one clugter is caled the Diameter
of the cluster and the minimum dissmilarity between entitiesin one cluster with any

other outsde it is called the Split of the cluster. The idea of using Diameter and Split asa
measure of clugtering was suggested by Délattre and Hansen [2]. There are different
agorithmsthat differ in how the distance between two clusters is computed. Average
linkage clustering uses the average smilarity of observations between two groups as the
measure between the two groups. Complete linkage clustering uses the furthest pair of
observations between two groups to determine the smilarity of the two groups. Sngle
linkage clustering, on the other hand, computes the smilarity between two groups asthe
gmilarity of the closest pair of observations between the two groups. But it iswell known
that minimum diameter partitions suffer from the dissection effect. In which case, very
amilar entities may be assgned to different clusters[1, 2, 3]. But instead of minimizing
the diameter of acluder, if the sum of diameters of clustersis minimized, the dissection
effect is much less damaging [1].

That iswhy, where homogeneity of the clusters are desirable, partitioning the entitiesin
clugters such that the sum of the diameters of the clusters are minimized is much more
effective. Brucker showed that the problem of partition a set of entities in more than two
clusters such thet the sum of the diametersis minimized is NP-complete [4]. Hansen
provided a O(n*logn) agorithm for the problem when a set of entities are partitioned into
two clusters[1]. Sarnath provided another algorithm based on dynamic digraph
connectivity that improves the time complexity of Hansen agorithm by afactor of
O(logn). Both Hansen and Sarnath agorithm performs operation on graphs where the
entities are represented by the vertices and the dissmilarity between any pair of entities
are represented by the weight of the edge that connects the vertices representing the
entities. In this paper, the performance of Hansen and Sarnath algorithm on a set of
graphs of size 50 to 100 are presented where Sarnath agorithm consstently performed
better. The rest of the paper is organized as follows: a description of the problemis given
in section two. A generic procedure to solve the problem in which Hansen and Sarnath
agorithm worksis presented in section three. Hansen and Sarnath agorithm and their
implementation is described in section four. In section five, the performance of these two
agorithms on a set of graph is compared. Conclusons are drawn in section Six.

2 TheProblem:

A st of n entities and the dissmilarity between a pair of entities can be represented by a
graph G=(V, E) with n vertices with the length of edges representing the dissmilarity

between the vertices it connects. In a complete graph, dissmilarity between each pair of
vertices is represented by the length of the edge connecting them. We want to partition
the set of verticesinto two clusters Cp and C; such the diameter of cluster Cp isequd to
some vaue dy and the diameter of cluster C; isequd to d;. By definition of diameter,
thereis no pair of vertex in Cy the connecting edge between them has length greater than
do and thereis no pair of verticesin C; for which the connecting edge between them has
length grester than d;. Without loss of generdity it can be assumed that dy >= d;. So, Co
isthe dlugter with bigger diameter and C; isthe dugter with amdler diameter. Minimum
sum of diameters clugtering problem finds optimal dy and d; such that (dp+d;) is
minimum for which there is a partition of the verticesin two dlugters. Such apartition is
cdled optimal.

3 A Generic Algorithm:

Before explaining the seps of a generic dgorithm to find the optima diameters, let us
formulate a relation between the diameters, length of edges and the vertices of the graph.
Assume we have a graph with a set of vertices V={x, X2,, Xn} and aset of edges
E={e1, &, ..., en}. We want to partition the verticesin two clusters Cp and C; such that
the diameter of cluster Cy is some edge length dy and the diameter of cluster C; issome
edge length dy. The length of some edge ‘g;’ between verticesi and j is denoted djj. Let’'s
associate a boolean variable x; to each vertex such that:

X =0if x isin Gy
X =1if xisinCy

For any dy, d; pair, the partition needs to satisfy the following three invariants.

1) If for some edge g;, dij>do, i and j both cannot be in the same cluster. For the
verticesi and j, we can assgn the following boolean values: %=0, x=1 or x=1,
i=0.
2) ij for some edge g;, do>=d;;>d1, both i and j cannot be in cluster C;. Either x=0,
x=0, or =0, x;=1 or x=1, x=0.
3) If for some edge g;, d1>=d;;, the vertices can both be in Co, or C; or they can bein
Separate clugers.

To hold thefirgt invariant true, apply aboolean conjunct: (x U) to every edge g;,
wherever d;j>do. Refer the conjunct as Type0 congtraint.

To hold the second invariant true, gpply a boolean conjunct: (x U x) U (@x U @) to
every edge j, wherever do>=d;>d;. Refer the conjunct (@x U @x;) as Typel congtraint.

To hold the third invariant true, we need not to apply any constraint for edges g, if dj<=
d1. Thereis no redtriction on which cluster i or j would belong.

The following boolean table expresses this rel ationship:

Table 1: Boolean Conjuncts for Diameter Restriction

b C @b |[@c |bvc|@bv@c|(bvc)U (@bvac)
0 0 1 1 0 1 0
0 1 1 0 1 1 1
1 0 0 1 1 1 1
1 1 0 0 1 0 0

Writing for each pair (%, X;) of vertices the binary relation which isimplied by the value

of dj with respect to do and dy, we obtain a quadratic boolean equation (E) whichisin the
form of 2-Conjunctive Norma Form or 2CNF expression. From the definition of (E), it
follows that the equation (E) is satisfiable or has atrue assgnment if thereisa partition

of vertices such that the diameter of the bigger duster is dp and the diameter of the

gmdler cluger isd;. If we canfind al (do, d;) par of edgesfor which thereisa partition

of verticesinto two clugters satisfying the invariants, we can find the optima (do, d1) pair
inlineer time.

The previous results yield the following generic agorithm, which receives a connected,
undirected graph G=(V, E) with aweight functionw: E ® R as parameter:

Generic Algorithm (G, w)

1 Identify al edge lengths that are possible candidates for dp and d;

2 For each candidate edge do, identify the smdlest vdue dy such that there existsa
partitioning of the graph into two clusters

3 Find the smdlest pair of (dy, d1) for which the sum of diameters (do+d;) is
minimum

4 Algorithms of Hansen and Sarnath:

The two dgorithms to find minimum sum of diameters follows the structure of the

generic dgorithm. They each use smilar process to identify the set of possible candidates
for do. They use different gpproach when it comes to search for smallest d; for each dp in
step 2.

It follows that the set of edges that will be the candidates for dy can be found in the
process of growing a maximum spanning tree. The only edges whose lengths are
candidates for dy are the edges that completed the first odd cycle in the spanning tree and
the edges included in the spanning forest before the first odd cycle was encountered [1].
All candidates for d; are lesser than or equd to the edge length that condtitutes the first
odd cycle[1].

Assume, the edges are sorted in non-increasing order having lengths { dn,,dim.-
1,++-0min,....,d2,d1}. Thefirg odd cycleisfound in dqy, in the process of growing a
maximum spanning tree. The st of candidate d, lies on the left of dyiy value, dmin
included. The set of d; lieson theright of dmin, dmin iNcluded. Hansen performs abinary
search on the set of d; to find the smdlest d; for which the boolean expression (E) istrue.
Sarnath tarts with the biggest dy value and performs an incrementa search on the set of
dx to find a satisfiable boolean expresson (E) beginning with the amdlest d;. In both
agorithms, sum of dl (do, d1) pair is stored for each dp in the set. Thelist is scanned to
find the minimum sum of diameters. The (cb, d1) par for which the sum is minimum is
cdled optimal.

Hansen Algorithm:

Hansen agorithm as described in [1] operatesin the following way. Firdt, sort dl the
edges in non-increasing order and find the first odd cycle that occursin growing the
maximum spanning tree. Find the set of candidate dy and d; vaues. The edges that are
equa to or bigger than dnyin belongsto the set . The edgesthat are equa to or smdler
than dyin belongsto the set S;. For each edge dy in &, proceed to a binary search on the
ordered set of S; to find ad; vaue. For each (do, d;) pair, scan the list of edgesto
congtruct a 2CNF expression (E) and check for the satisfiability of the 2CNF expresson
(B). If satidfiable, find next edge that is smdler than the current d; from the set S; by
applying binary search, congtruct (E) and check satidfiahility. If nat, find next edge bigger
than current d; by applying binary search, construct (E) and check satisfiability. Store the
gmdlest d; for each dy for which the constructed boolean expression is stisfiable.
Perform these operations for every dy in &. The minimum sum (dy, d1) can be found by
searching the lig of (do, d;) pair for which the boolean expresson was found satisfigble.

Finding dpn:

Thefirst odd cydein the growing of amaximum spanning tree can be found in O(n?)
time [1]. Apply Kruskd’s dgorithm to grow maximum spanning tree. If the edgein
question, forms an even cycle, the edge isignored. If the edge forms an odd cycle, then
we have found dyin.

Checking satisfiability:

Hansen uses the algorithm described by Aspvall to check satisfiability of the boolean
expression congtructed for some (do, d1) pair [6]. Checking the consistency of quadratic
boolean equation (E) defined on a set of n vertices can be done in polynomia time [1].
The agorithm adds a directed graph to represent a 2CNF expression referred as
congraint graph [7]. The congraint graph is congtructed as follows. For each vertex vaue
i inthe origina graph, add two verticesi and @i wherei and @i are complements of each

other. For each congtraint (u U v), add edges @u® v and @v ® u in the constraint graph.
So, for each TypeO congtraint, we add two edges that are directed from negated literds to
non-negated ones. For each Typel congraint, the agorithm adds two edges directed from
non-negeted literas to negated ones. The dgorithm to check satidfigbility of (E) relies
upon identifying the strong components of the congtraint graph. A 2CNF expression is
sdidfigbleif and only if no vertex i isin the same strong component as its complement &
[6]. Strongly connected components of adirected graph G=(V, E) can be computed in
linear time using two depth-first search (DFS); one on the graph itself, and the other one
on the trangpose of G, whichisdefined as G' = (V, E"), where E" ={(u, V) : (v, u) isin
E} [8]. That is, E" consists of the edges of G with their directions reversed.

Hansen (G, w)

1 Grow maximum spanning tree to find dmin, Which isthefirg odd cyclein growing
the spanning tree

2 |dentify S, the set of dl candidate dy edges and S;, the set of dl candidate d;
edges

3 dy = ni

4 foreechdpin &

5 do find a candidate d; from S; in binary search fashion

6 congtruct a boolean expression (E) for dy and d;

7 Check stisfiahility of the expression

8 if stidiable

9 then search for alower vaue of d;

10 ese searchfor ahigher vdue of di

11 dore smallest d; for each dy

12 Choose (dp, d1) pair such that the sum of dy and d; isminimum

Sarnath Algorithm:

Sarnath agorithm uses properties from Dynamic Digraph Connectivity to solve
Minimum Sum of Diameters Clugtering. The dgorithm differs from Hansen in two ways.

1) Instead of carrying out abinary search to find d, it is found from a sequentia
search.

2) Ingtead of solving each 2CNF ingtance from scratch, it is done
incrementaly/decrementdly for each new vaue of dp and dy [7].

The dgorithm makes improvements on how the satidfigbility of 2-SAT boolean
expression is solved. The dgorithms choose dy from the edge with largest length from S,
and choose d; from the edge with smalest length from S;. Each time a boolean
expression (E) isfound not satisfiable the agorithm chooses the next bigger edge from $;
for di until asatisfiable expresson is found. Each time the expression (E) is found true,
the next samdler edge is selected from S for dy. But instead of constructing the congtraint
graph from scratch for each 2CNF expression and solving for satisfiablity, the congtraint
greph is updated dynamicaly based on the following change in 2CNFF expression:

1) Eachtimeabigger g; ischosen from S, for d; value, remove the Typel condraint
from g;.

2) Eachtimeasmdler dy ischosen from S for dy value, add TypeO condraint to the
last edge considered for d.

For aninitid graph of n vertices, the condraint graph will contain 2n vertices. The
agorithm operates on a data Sructure which isamatrix of size (n x n) that represents the
condraint graph. The dgorithm maintains trangtive closure of the congraint graph at dl
time and checksfor cyclesin the congraint graph to find satidfiability. So, for each
changein 2CNF expression (E), the matrix is updated and satisfiability is checked by
querying the matrix.

5 Performance:

Big- O Analysis:

Hansen dgorithm ranks the edges of the initid graph in decreasing order. For a complete
graph, sorting the edges takes O(n?logn) time for a graph with n vertices and O(n?) edges.
The construction of the maximum spanning tree from the initia graph takes O(n?) time.
Hansen agorithm checks at most logn d; instance and there can be a most n dp. So, in the
worgt case, the agorithm checks O(nlogn) pair of (do, d1). The entire dgorithm takes
O(n?logn)+O(nlogn)* O(n?)=0(n*logn) time. Thisis the overall time complexity of
Hansen dgorithm.

On the other hand, Sarnath agorithm pre-computes the matrix in O(n®) time[7]. It
computes the most persistence path between al pair of vertices and consders dl other
vertices as intermediate vertices on the path. The calculation is andlogous to Hoyd-
Warshdl’s dl pair shortest path agorithm [8]. The data Structure cleverly maintains the
matrix so that every time the boolean expression is updated, the edges need to be deleted
can be identified in constant time. Each time a edge is inserted, it however takes O(n?)
time to update the matrix [7]. At every insertion, the dgorithm caculates any new path
between dl pair of vertices that might have been crested considering the new vertices
connected between the new edge as intermediate vertices. The overdl time complexity of
Sarnath dgorithm isO(n®).

CPU Performance;

The dgorithms were implemented in C++. The programs were compiled usng GNU g++
compiler on a Digitd AlphaServer 1000A 4/266 running Digital UNIX v4.0D with 256
MB of RAM. In comparing the performance of two programs, CPU cycle used by each
program is counted. The CPU cycle used by Hansen adgorithm is dmog three times than
what was used by Sarnath agorithm when tested on a complete graph with 30 vertices.

The cycle used by Hansen dgorithm was 2 Y4times when testing on a graph with 40
vertices. Both dgorithms run in polynomid time and the CPU cycle used incresses very

rapidly even for avery smdl graph.

Table 2: CPU cyde used by Two Algorithms

Number Of Vertices Hansen’s Algorithm Sarnath’s Algorithm
(In Millions) (In Millions)

10 1 .08

20 10 1.6

30 30 7.5

40 98 38

120000000 -

Performance Comparison Between Two Algorithms

I HANSEN
B SARNATH

100000000

80000000

60000000

CPU Cycles

/
/
/

40000000

s

20000000

—_

0
0

10 20 30

Number of Vertices

40 50

Figure 1. Graph of CPU Performance

6 Conclusion:

Both Hansen and Sarnath dgorithm runs in polynomia time. Even though, Sarnah
agorithm improves Hansen dgorithm by a factor of O(logn), the run time complexity of
both the dgorithms is a polynomiad degree of three which makes it quite impossible to
tes them even on smdl grephs of 9ze 100 on the machine where the dgorithms were
tesed on. The time and space requirement of both the agorithms are quite high. The
hidden congant factor of the big-O andyss for Hansen dgorithm is higher than that of
Sanath due to the fact that it congtructs condraint grgph and finds satisfiability of the
boolean expresson every time a new (do, ch) pair is chosen. Whereas, Sarnath does this
incrementaly/decrementaly and only operates on one sngle matrix of sze (n x n). The
resource limitation dso prohibited testing on ingances of large graphs. However, the
dgorithms were not tested againg any heuristics and the performance of these two
agorithms againg any such heurigtic is yet to be compared.

Refer ences:

1. Hansen, P and Jaumard, B. (1987). Minimum Sum of Diameters Clustering.
Journal of Classification, 4, 215-226.

2. Ddatre, M. and Hansen, P. (1980). Bicriterion Cluster Analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI 2(4), 277-291.

3. Cormick, R. (1971). A Review of Classfication. Journal of the Royal
Satistical Society, A(134), 321 - 367.

4. Brucker, P. (1978). On the Complexity of Clustering Problems. Optimization
and Operations Research, Lecture Notes in Economics and Mathematical

Systems, 45-54.

5. Hartigan, John. (1975). Clugtering Algorithms. New Y ork: John Wiley
and Sons.

6. Aspvall, B. et d. (1979). A Linear-Time Algorithm for Testing the Truth of Certain
Quantified Boolean Formulas. Information Processing Letters, Vol 8, 3.

7. Sanah, R. Dynamic digraph connectivity hagens minimum sum-of-diameters
clustering. To Appear in SWAT 2002.

8. Cormen, T. et d. (2000). Introduction to Algorithms. Massachussetts: MIT Press.

