
Performance of Two Algorithms In Minimum
Sum of Diameters Clustering

Zubair Noman
Department of Computer Science

St. Cloud State University
znoman@eeyore.stcloudstate.edu

Mynul Khan

Department of Computer Science
St. Cloud State University

mkhan@eeyore.stcloudstate.edu

Abstract:

Minimum sum of diameters clustering can be solved by reduction to determination of the
satisfiability of a 2- Conjunctive Normal Form or 2-SAT statement. Hansen provided an
algorithm that solved O(nlogn) 2-SAT instances and ran with time complexity O(n3logn)
on a graph of size n. Sarnath provided an improved dynamic digraph algorithm that
solved O(m) 2-SAT instances on a graph with m edges and ran with time complexity
O(n3). Algorithms were implemented to partition instances of a complete graph having
n=50 to n=500 vertices where all the vertices are connected with each other. In tests of
the two algorithms, the Sarnath algorithm consistently performed better to find the edges
of largest length of two clusters such that the sum is minimized.

1 Introduction:

A general question facing researchers in many areas of inquiry is how to organize
observed data into meaningful structures, that is, to develop taxonomies. Clustering of
data helps to solve this problem by partitioning large sets of data into clusters of smaller
sets of similar data. Clustering of data can be done in different ways. Most often the
difference between a pair of entities is considered to partition the entire data set [1]. The
maximum dissimilarity between any two entities within one cluster is called the Diameter
of the cluster and the minimum dissimilarity between entities in one cluster with any
other outside it is called the Split of the cluster. The idea of using Diameter and Split as a
measure of clustering was suggested by Delattre and Hansen [2]. There are different
algorithms that differ in how the distance between two clusters is computed. Average
linkage clustering uses the average similarity of observations between two groups as the
measure between the two groups. Complete linkage clustering uses the furthest pair of
observations between two groups to determine the similarity of the two groups. Single
linkage clustering, on the other hand, computes the similarity between two groups as the
similarity of the closest pair of observations between the two groups. But it is well known
that minimum diameter partitions suffer from the dissection effect. In which case, very
similar entities may be assigned to different clusters [1, 2, 3]. But instead of minimizing
the diameter of a cluster, if the sum of diameters of clusters is minimized, the dissection
effect is much less damaging [1].

That is why, where homogeneity of the clusters are desirable, partitioning the entities in
clusters such that the sum of the diameters of the clusters are minimized is much more
effective. Brucker showed that the problem of partition a set of entities in more than two
clusters such that the sum of the diameters is minimized is NP-complete [4]. Hansen
provided a O(n3logn) algorithm for the problem when a set of entities are partitioned into
two clusters [1]. Sarnath provided another algorithm based on dynamic digraph
connectivity that improves the time complexity of Hansen algorithm by a factor of
O(logn). Both Hansen and Sarnath algorithm performs operation on graphs where the
entities are represented by the vertices and the dissimilarity between any pair of entities
are represented by the weight of the edge that connects the vertices representing the
entities. In this paper, the performance of Hansen and Sarnath algorithm on a set of
graphs of size 50 to 100 are presented where Sarnath algorithm consistently performed
better. The rest of the paper is organized as follows: a description of the problem is given
in section two. A generic procedure to solve the problem in which Hansen and Sarnath
algorithm works is presented in section three. Hansen and Sarnath algorithm and their
implementation is described in section four. In section five, the performance of these two
algorithms on a set of graph is compared. Conclusions are drawn in section six.

2 The Problem:

A set of n entities and the dissimilarity between a pair of entities can be represented by a
graph G=(V, E) with n vertices with the length of edges representing the dissimilarity

between the vertices it connects. In a complete graph, dissimilarity between each pair of
vertices is represented by the length of the edge connecting them. We want to partition
the set of vertices into two clusters C0 and C1 such the diameter of cluster C0 is equal to
some value d0 and the diameter of cluster C1 is equal to d1. By definition of diameter,
there is no pair of vertex in C0 the connecting edge between them has length greater than
d0 and there is no pair of vertices in C1 for which the connecting edge between them has
length greater than d1. Without loss of generality it can be assumed that d0 >= d1. So, C0
is the cluster with bigger diameter and C1 is the cluster with smaller diameter. Minimum
sum of diameters clustering problem finds optimal d0 and d1 such that (d0+d1) is
minimum for which there is a partition of the vertices in two clusters. Such a partition is
called optimal.

3 A Generic Algorithm:

Before explaining the steps of a generic algorithm to find the optimal diameters, let us
formulate a relation between the diameters, length of edges and the vertices of the graph.
Assume we have a graph with a set of vertices V={x1, x2,, xn} and a set of edges
E={e1, e2, ..., em}. We want to partition the vertices in two clusters C0 and C1 such that
the diameter of cluster C0 is some edge length d0 and the diameter of cluster C1 is some
edge length d1. The length of some edge ‘eij’ between vertices i and j is denoted dij. Let’s
associate a boolean variable xi to each vertex such that:

 xi = 0 if xi is in C0
 xi = 1 if xi is in C1

For any d0, d1 pair, the partition needs to satisfy the following three invariants:

1) If for some edge eij, dij>d0, i and j both cannot be in the same cluster. For the
vertices i and j, we can assign the following boolean values: xi=0, xj=1 or xi=1,
xj=0.

2) If for some edge eij, d0>=dij>d1, both i and j cannot be in cluster C1. Either xi=0,
xj=0, or xi=0, xj=1 or xi=1, xj=0.

3) If for some edge eij, d1>=dij, the vertices can both be in C0, or C1 or they can be in
separate clusters.

To hold the first invariant true, apply a boolean conjunct: (xi ∨ xj) to every edge eij,
wherever dij>d0. Refer the conjunct as Type0 constraint.

To hold the second invariant true, apply a boolean conjunct: (xi ∨ xj) ∧ (¬xi ∨ ¬xj) to
every edge eij, wherever d0>=dij>d1. Refer the conjunct (¬xi ∨ ¬xj) as Type1 constraint.

To hold the third invariant true, we need not to apply any constraint for edges eij, if dij<=
d1. There is no restriction on which cluster i or j would belong.

The following boolean table expresses this relationship:

Table 1: Boolean Conjuncts for Diameter Restriction

b

c

¬¬b

¬¬c

b v c

¬¬b v ¬¬c

(b v c) ∧∧ (¬¬b v ¬¬c)

0 0 1 1 0 1 0

0 1 1 0 1 1 1
1 0 0 1 1 1 1

1 1 0 0 1 0 0

Writing for each pair (xi, xj) of vertices the binary relation which is implied by the value
of dij with respect to d0 and d1, we obtain a quadratic boolean equation (E) which is in the
form of 2-Conjunctive Normal Form or 2CNF expression. From the definition of (E), it
follows that the equation (E) is satisfiable or has a true assignment if there is a partition
of vertices such that the diameter of the bigger cluster is d0 and the diameter of the
smaller cluster is d1. If we can find all (d0, d1) pair of edges for which there is a partition
of vertices into two clusters satisfying the invariants, we can find the optimal (d0, d1) pair
in linear time.

The previous results yield the following generic algorithm, which receives a connected,
undirected graph G=(V, E) with a weight function w: E → R as parameter:

Generic Algorithm (G, w)
1 Identify all edge lengths that are possible candidates for d0 and d1
2 For each candidate edge d0, identify the smallest value d1 such that there exists a

partitioning of the graph into two clusters
3 Find the smallest pair of (d0, d1) for which the sum of diameters (d0+d1) is

minimum

4 Algorithms of Hansen and Sarnath:

The two algorithms to find minimum sum of diameters follows the structure of the
generic algorithm. They each use similar process to identify the set of possible candidates
for d0. They use different approach when it comes to search for smallest d1 for each d0 in
step 2.

It follows that the set of edges that will be the candidates for d0 can be found in the
process of growing a maximum spanning tree. The only edges whose lengths are
candidates for d0 are the edges that completed the first odd cycle in the spanning tree and
the edges included in the spanning forest before the first odd cycle was encountered [1].
All candidates for d1 are lesser than or equal to the edge length that constitutes the first
odd cycle [1].

Assume, the edges are sorted in non-increasing order having lengths {dm,dm-

1,...dmin,....,d2,d1}. The first odd cycle is found in dmin in the process of growing a
maximum spanning tree. The set of candidate d0 lies on the left of dmin value, dmin
included. The set of d1 lies on the right of dmin, dmin included. Hansen performs a binary
search on the set of d1 to find the smallest d1 for which the boolean expression (E) is true.
Sarnath starts with the biggest d0 value and performs an incremental search on the set of
d1 to find a satisfiable boolean expression (E) beginning with the smallest d1. In both
algorithms, sum of all (d0, d1) pair is stored for each d0 in the set. The list is scanned to
find the minimum sum of diameters. The (d0, d1) pair for which the sum is minimum is
called optimal.

Hansen Algorithm:

Hansen algorithm as described in [1] operates in the following way. First, sort all the
edges in non–increasing order and find the first odd cycle that occurs in growing the
maximum spanning tree. Find the set of candidate d0 and d1 values. The edges that are
equal to or bigger than dmin belongs to the set S0. The edges that are equal to or smaller
than dmin belongs to the set S1. For each edge d0 in S0, proceed to a binary search on the
ordered set of S1 to find a d1 value. For each (d0, d1) pair, scan the list of edges to
construct a 2CNF expression (E) and check for the satisfiability of the 2CNF expression
(E). If satisfiable, find next edge that is smaller than the current d1 from the set S1 by
applying binary search, construct (E) and check satisfiability. If not, find next edge bigger
than current d1 by applying binary search, construct (E) and check satisfiability. Store the
smallest d1 for each d0 for which the constructed boolean expression is satisfiable.
Perform these operations for every d0 in S0. The minimum sum (d0, d1) can be found by
searching the list of (d0, d1) pair for which the boolean expression was found satisfiable.

Finding dmin:

The first odd cycle in the growing of a maximum spanning tree can be found in O(n2)
time [1]. Apply Kruskal’s algorithm to grow maximum spanning tree. If the edge in
question, forms an even cycle, the edge is ignored. If the edge forms an odd cycle, then
we have found dmin.

Checking satisfiability:

Hansen uses the algorithm described by Aspvall to check satisfiability of the boolean
expression constructed for some (d0, d1) pair [6]. Checking the consistency of quadratic
boolean equation (E) defined on a set of n vertices can be done in polynomial time [1].
The algorithm adds a directed graph to represent a 2CNF expression referred as
constraint graph [7]. The constraint graph is constructed as follows: For each vertex value
i in the original graph, add two vertices i and ¬i where i and ¬i are complements of each

other. For each constraint (u ∨ v), add edges ¬u → v and ¬v → u in the constraint graph.
So, for each Type0 constraint, we add two edges that are directed from negated literals to
non-negated ones. For each Type1 constraint, the algorithm adds two edges directed from
non-negated literals to negated ones. The algorithm to check satisfiability of (E) relies
upon identifying the strong components of the constraint graph. A 2CNF expression is
satisfiable if and only if no vertex i is in the same strong component as its complement ¬i
[6]. Strongly connected components of a directed graph G=(V, E) can be computed in
linear time using two depth–first search (DFS); one on the graph itself, and the other one
on the transpose of G, which is defined as GT = (V, ET), where ET = {(u, v) : (v, u) is in
E} [8]. That is, ET consists of the edges of G with their directions reversed.

Hansen (G, w)
1 Grow maximum spanning tree to find dmin which is the first odd cycle in growing

the spanning tree
2 Identify S0, the set of all candidate d0 edges and S1, the set of all candidate d1

edges
3 d1 ← nil
4 for each d0 in S0
5 d0 find a candidate d1 from S1 in binary search fashion
6 construct a boolean expression (E) for d0 and d1
7 Check satisfiability of the expression
8 if satisfiable
9 then search for a lower value of d1
10 else search for a higher value of d1
11 store smallest d1 for each d0
12 Choose (d0, d1) pair such that the sum of d0 and d1 is minimum

Sarnath Algorithm:

Sarnath algorithm uses properties from Dynamic Digraph Connectivity to solve
Minimum Sum of Diameters Clustering. The algorithm differs from Hansen in two ways:

1) Instead of carrying out a binary search to find d1, it is found from a sequential
search.

2) Instead of solving each 2CNF instance from scratch, it is done
incrementally/decrementally for each new value of d0 and d1 [7].

The algorithm makes improvements on how the satisfiability of 2-SAT boolean
expression is solved. The algorithms choose d0 from the edge with largest length from S0,
and choose d1 from the edge with smallest length from S1. Each time a boolean
expression (E) is found not satisfiable the algorithm chooses the next bigger edge from S1
for d1 until a satisfiable expression is found. Each time the expression (E) is found true,
the next smaller edge is selected from S0 for d0. But instead of constructing the constraint
graph from scratch for each 2CNF expression and solving for satisfiablity, the constraint
graph is updated dynamically based on the following change in 2CNF expression:

1) Each time a bigger eij is chosen from S1 for d1 value, remove the Type1 constraint

from eij.
2) Each time a smaller d0 is chosen from S0 for d0 value, add Type0 constraint to the

last edge considered for d0.

For an initial graph of n vertices, the constraint graph will contain 2n vertices. The
algorithm operates on a data structure which is a matrix of size (n x n) that represents the
constraint graph. The algorithm maintains transitive closure of the constraint graph at all
time and checks for cycles in the constraint graph to find satisfiability. So, for each
change in 2CNF expression (E), the matrix is updated and satisfiability is checked by
querying the matrix.

5 Performance:

Big- O Analysis:

Hansen algorithm ranks the edges of the initial graph in decreasing order. For a complete
graph, sorting the edges takes O(n2logn) time for a graph with n vertices and O(n2) edges.
The construction of the maximum spanning tree from the initial graph takes O(n2) time.
Hansen algorithm checks at most logn d1 instance and there can be at most n d0. So, in the
worst case, the algorithm checks O(nlogn) pair of (d0, d1). The entire algorithm takes
O(n2logn)+O(nlogn)*O(n2)=O(n3logn) time. This is the overall time complexity of
Hansen algorithm.

On the other hand, Sarnath algorithm pre-computes the matrix in O(n3) time [7]. It
computes the most persistence path between all pair of vertices and considers all other
vertices as intermediate vertices on the path. The calculation is analogous to Floyd-
Warshall’s all pair shortest path algorithm [8]. The data structure cleverly maintains the
matrix so that every time the boolean expression is updated, the edges need to be deleted
can be identified in constant time. Each time a edge is inserted, it however takes O(n2)
time to update the matrix [7]. At every insertion, the algorithm calculates any new path
between all pair of vertices that might have been created considering the new vertices
connected between the new edge as intermediate vertices. The overall time complexity of
Sarnath algorithm is O(n3).

CPU Performance:

The algorithms were implemented in C++. The programs were compiled using GNU g++
compiler on a Digital AlphaServer 1000A 4/266 running Digital UNIX v4.0D with 256
MB of RAM. In comparing the performance of two programs, CPU cycle used by each
program is counted. The CPU cycle used by Hansen algorithm is almost three times than
what was used by Sarnath algorithm when tested on a complete graph with 30 vertices.

The cycle used by Hansen algorithm was 2 ½ times when testing on a graph with 40
vertices. Both algorithms run in polynomial time and the CPU cycle used increases very
rapidly even for a very small graph.

Table 2: CPU cycle used by Two Algorithms

Performance Comparison Between Two Algorithms

0

20000000

40000000

60000000

80000000

100000000

120000000

0 10 20 30 40 50

Number of Vertices

C
P

U
 C

yc
le

s

HANSEN

SARNATH

Figure 1: Graph of CPU Performance

Number Of Vertices Hansen’s Algorithm
(In Millions)

Sarnath’s Algorithm
(In Millions)

10 1 .08
20 10 1.6
30 30 7.5
40 98 38

6 Conclusion:

Both Hansen and Sarnath algorithm runs in polynomial time. Even though, Sarnath
algorithm improves Hansen algorithm by a factor of O(logn), the run time complexity of
both the algorithms is a polynomial degree of three which makes it quite impossible to
test them even on small graphs of size 100 on the machine where the algorithms were
tested on. The time and space requirement of both the algorithms are quite high. The
hidden constant factor of the big-O analysis for Hansen algorithm is higher than that of
Sarnath due to the fact that it constructs constraint graph and finds satisfiability of the
boolean expression every time a new (d0, d1) pair is chosen. Whereas, Sarnath does this
incrementally/decrementally and only operates on one single matrix of size (n x n). The
resource limitation also prohibited testing on instances of large graphs. However, the
algorithms were not tested against any heuristics and the performance of these two
algorithms against any such heuristic is yet to be compared.

References:

1. Hansen, P and Jaumard, B. (1987). Minimum Sum of Diameters Clustering.
Journal of Classification, 4, 215-226.

2. Delattre, M. and Hansen, P. (1980). Bicriterion Cluster Analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI 2(4), 277-291.

3. Cormick, R. (1971). A Review of Classification. Journal of the Royal
Statistical Society, A(134), 321 - 367.

4. Brucker, P. (1978). On the Complexity of Clustering Problems. Optimization
and Operations Research, Lecture Notes in Economics and Mathematical
Systems, 45-54.

5. Hartigan, John. (1975). Clustering Algorithms. New York: John Wiley
and Sons.

6. Aspvall, B. et al. (1979). A Linear-Time Algorithm for Testing the Truth of Certain
Quantified Boolean Formulas. Information Processing Letters, Vol 8, 3.

7. Sarnath, R. Dynamic digraph connectivity hastens minimum sum-of-diameters
clustering. To Appear in SWAT 2002.

8. Cormen, T. et al. (2000). Introduction to Algorithms. Massachussetts: MIT Press.

