Ackermann’s Function in the Number of 1s
Generated by Green’s Machines

Bryant A. Julstrom
Department of Computer Science
St. Cloud State University
julstrom@eeyore.stcloudstate.edu

Abstract

The Busy Beaver problem, defined by Rado in 1962, seeks the maximum number
Y(n) of 1s that an n-state Turing machine may leave, if and when it halts, on an
initially blank tape [8]. In 1964, Green described a class of Turing machines, the
larger built from the smaller, that generate long blocks of 1s and thus set lower
bounds for values of X(#n); he called them Class M machines [3]. Ackermann’s
function is a computable function that is not primitive recursive and that returns huge
values for even moderate arguments. A function fyi(x, y) defined by Green’s Class M
machines of x states operating on a block of y 1s also returns large values. In
particular, the recurrence that describes fy(x, y) is identical in form to a common
presentation of Ackermann’s function. They differ only in their base cases and the
addition of 1 in the recursive case of fy(x,).

mailto:julstrom@eeyore.stcloudstate.edu

Introduction

Consider a Turing machine with n states whose tape is infinite in both directions,
whose tape alphabet is {0,1}, and that writes and shifts on each move, including the
transition to the halt state. Starting on a tape whose every cell contains 0, what is the
largest number of 1s the machine may leave on the tape when it halts? This is the
Busy Beaver problem [8], and the maximum number of 1s, as a function of 7, is the
Busy Beaver function X(n).

Green [3] described a collection of machines, which he called Class M machines, that
establish lower bounds for X(#). Beginning with a small machine that halts when
started on a tape containing all Os, he added two new states, which call the original
machine like a subroutine. This process can be continued, to build machines of any
number of states, and the number of 1s they leave on the tape grows very quickly as
the machines get larger.

Ackermann's function is the standard example of a computable function that is not
primitive recursive. Students first encounter it as an example of recursion and in the
time complexity of efficient union-find operations [4, pp.70-78][10].

Investigators of the Busy Beaver problem have noticed a relationship between the
numbers of 1s Green's machines leave on the tape and Ackermann's function. Marxen
and Buntrock, for example, described these values as establishing a “non-trivial (not
primitive recursive) lower bound” for X(n) [7]. We make that relationship explicit by
identifying a recurrence, nearly identical in form to one that defines Ackermann's
function, that returns the number of 1s a Class M machine of x states leaves on its
tape when the tape initially contains a block of y 1s.

The following sections of the paper describe the Busy Beaver problem, Ackermann’s
function, and Green’s machines, then identify a recurrence that specifies the function
that Green’s Class M machines implement and relate this function to Ackermann’s
function.

The Busy Beaver Problem

What is the maximum number of 1s that a halting n-state Turing machine can leave
on an initially blank tape? This is the Busy Beaver problem, described by Tibor Rado
in 1962 [8].

More formally, let M be a Turing machine with n states, not counting the halt state.

Its tape is infinite in both directions, its tape alphabet is {0,1}, and no cell is empty.
M both writes and shifts its head on every transition, including the one to the halt
state. When such a machine is started on a blank tape—a tape containing all Os—what
is the largest number of 1s that, if it halts, it may leave on the tape? As a function of
n, this count is the Busy Beaver function X(n), and a machine of # states that halts
with Z(n) 1s on its tape is an n-state Busy Beaver.

The Busy Beaver function is non-computable [5][8]; indeed, for large enough n, X(n)
grows faster than any computable function. Values of X(n) have been established for
small values of n: 2(1) =1, Z(2) =4 [8], 2(3) =6 [6], and £(4) = 13 [1]. Marxen and
Buntrock [7] described a machine that establishes that Z(5) is at least 4,098, and
another [2] that fixes a lower bound for 2(6): greater than 1.2%10*®. The latter
machine executes more than 3.0#10'7** moves before it halts. Figure 1 shows a 3-
state Busy Beaver; on a transition labeled a/b/d, the machine reads the symbol a,
writes the symbol b, and shifts its head one cell in the direction d.

0/ 1L
1/1/E. 1I0/E.

start
1/1/E. halt

0/ 1/E 011

Figure 1: A three-state Busy Beaver. When started on a blank tape,
this Turing machine halts and leaves six 1s.

Ackermann’s Function

Ackermann’s function is probably the most frequently cited example of a computable
function that is not primitive recursive (e.g., [9, pp.5-9]). A common presentation of
the function is this recurrence:

[y+1,ifx=0
A(x,y) =13 Ax-1,1),ify=0and x>0
 A(x—1, A(x, y—1)), otherwise

For small arguments x and y, 4(x,) is itself moderate, as Table 1 illustrates. The table
lists the values of Ackermann’s function forx =0, 1,2,3 and fory=0, 1, 2, ..., 10.
In particular, we see that A(0, y)=y+ 1; A(1,y) =y +2; A2, y) =2y + 3; and A(3, y)
=8(2X-1)+5.

Table 1: Values A(x,y) of Ackermann’s function for small values of x and y.

x|y=0 1 2 3 4 5 6 7 8 9 10
O] 1 |2]3]4]|5 6 7 8 9 10 11
1] 2 |3]4|5] 6 7 8 9 10 11 12
21 3 | 571911] 13 | 15 17 19 21 23
31 5 [13]129]61 125|253]509 | 1021 | 2045 | 4093 | 8189

In general, x determines how fast Ackermann’s function grows as a function of y. For

x > 4, that growth is extreme, and conventional notation cannot represent 4(x,y) in a
closed form.

Similarly, Ackermann’s function can be easily implemented in any high-level
programming language by translating the recurrence above into a recursive
procedure, but executing that procedure for all but the smallest arguments generally
fails through overflow of number representations or the run-time stack.

Green’s Machines

In 1964, Green described a mechanism for constructing Turing machines that leave
large numbers of 1s on initially blank tapes, thus establishing lower bounds for the
Busy Beaver function X(n) for larger values of n [3]. He called these Class M
machines; to be in Class M, a machine must satisfy the following conditions:

1. Its input is either a blank tape or a block of consecutive Is. In the latter case,
its head starts over the rightmost 1.

2. The machine computes a function M(m); when it halts, it leaves a contiguous
block of 1s.

3. The rightmost 1 of a machine’s output M(m) falls on the cell originally
occupied by the rightmost 1 of its input.

4. When it moves to the halt state, it reads the 0 to the right of a block of 1s and
shifts left.

5. The head never shifts more than one position to the right of the initial
rightmost 1.

Figure 2 shows a two-state Class M machine that computes the function M(m) = m +
1 by appending a 1 immediately to the left of the 1s initially on the tape.

halt

Figure 2: A two-state Class M machine that computes the function
M(m)=m+ 1 [3].

Let M,, be an n-state Class M machine. Figure 3 shows how to augment M,, with two
new states to obtain a larger Class M machine M,.». M,,+»’s new states call M,, like a
subroutine. When M,,1, is started on a tape holding m 1s, it shifts left until it
encounters a 0; there it computes M,,(0). It moves a 1 from the input’s left end to
M,,(0)’s right end, and invokes M,, again. It continues until the original input is
consumed; the number of 1s left on the tape is then

M, o(m) = 1+ M,(1 + M,(1 +... + M,(1 + M,(0)) ...)) = 1+ M,(M,2(m—1)).
Because M,,+, 1s also a class M machine, we can build M,+4 from it, and so on. The

next section considers in more detail the functions that Green’s Class M machines
implement.

1L old start M, old halt transttion
state /
0/0/L Q O/ 1R 00,
new statt
state
" 1/0/L

Figure 3: Building a larger Class M machine M,,+» by adding two
states (green) to a class M machine M,, (yellow) [3].

A Function Defined by Green’s Machines

Let M, be the Class M machine in Figure 2 that implements the function My(m) =m +
1. In general, let My be the Class M machine with an even number of states built
from M, by applying Green’s construction (k — 1) times. My, computes a function
Mj(m); when started on a tape containing a block of m 1s, My halts and leaves
M,i(m) 1s on the tape. What can we say about My(m)?

A Turing machine must have at least one state, so k> 1. If k=1, My is My, and
Myi(m) = My(m) =m + 1. If m = 0—that is, if My is started on a blank tape—the
machine immediately executes the transition to the start state of My-1). This machine
computes My-1y(0), which includes writing a single 1 on the old halt transition. After
this transition, My halts, since there are no 1s to the right of the output of a Class M
machine. Thus

Mou(0) =1+ Mpp-1y(0) =1+ 1+ Moy2(0)=...=1+1+ ...+ My(0) =k
Finally, for larger k£ and m, we have seen in the previous section that
Moi(m) = 1 + Mo 1)(Max(m—1)).
Now let fm(x, ¥) = May(y), so that

(y+1,ifx=1
fulx,y) =1 x,ify=0
L 1+ (=1, fu(x, y—1)), otherwise.

Though the base cases are different from that of Ackermann’s function, the
recurrence is the same, plus one. Table 2 lists the values of fi(x, y) for small values of
x and y.

We see that fiu(1,) =y + 1; (2,) = 2y + 2; and fu(3,) = 32" = 1). As with
Ackermann’s function, conventional notation cannot represent fyi(x, v) for x > 4. Most
significantly, the recurrence of Ackermann’s function re-appears in this function
implemented by Turing machines built according to Green’s construction.

Table 2: Values of the function fyi(x,y) derived from Green’s machines for small
values of x and y.

x|{y=0 1 2 3 4 5 6 7 8 9 10

1 1 2131415 6 7 8 9 10 11

21 2 (41 6| 8 |10 12 14 16 18 20 22

3 3 9121145193189 | 381|765 | 1533 | 3069 | 6141
Conclusion

Green described the construction of a class of Turing machines designed to leave
large blocks of 1s on an initially blank tape. These machines define a function of two
variables: the number of 1s left by a Class M machine with x states started on a tape
containing a block of y 1s. The recurrence that describes this function is similar in
form to a common presentation of Ackermann’s function. The two recurrences differ
only in their base cases and in one term of the Class M recurrence’s recursive case.
The latter recurrence demonstrates how Ackermann-like functions can arise naturally
from the construction of Turing machines.

References

1. Brady, Allen H. (1983). The determination of the value of Rad6’s noncomputable

function Z(k) for four-state Turing machines. /[EEE Transactions on Electronic
Computers, V.EC-15, pp.802-803.

2. Buntrock, Jiirgen and Heinar Marxen (2001). iwww.drb.insel.de/~heinar/BB/bb- |
6list .

I;. ;;reen, Milton W. (1964). A lower bound on Rad¢'s sigma function for binary
Turing machines. In Switching Circuit Theory and Logical Design: Proceedings
of the Fifth Annual Symposium, pp.91-94.

4. Horowitz, Ellis and Sartaj Sahni (1978). Fundamentals of Computer Algorithms.
Potomac, MD: Computer Science Press.

5. Julstrom, Bryant A. (1993). Noncomputability and the Busy Beaver problem. The
UMAP Journal, V.14, no.1, pp.39-74.

6. Lin, Shen and Tibor Rado (1965). Computer studies of turing machine problems.
Journal of the ACM, V.12, pp.196-212.

7. Marxen, Heiner and Jiirgen Buntrock (1990). Attacking the Busy Beaver problem
5. Bulletin of the European Association for Theoretical Computer Science, V.40,
pp.-247-251.

http://www.drb.insel.de/~heinar/BB/bb-6list
http://www.drb.insel.de/~heinar/BB/bb-6list

8. Rado, Tibor (1962). On non-computable functions. Bell System Technical
Journal, V.41, pp.877-884.

9. Rogers, Hartley, Jr. (1987). Theory of Recursive Functions and Effective
Computability. Cambridge, MA: The MIT Press.

10. Tarjan, Robert (1975). On the efficiency of a good but not linear set
merging algorithm. Journal of the ACM, V.22, n0.2, pp.215-225.

	Ackermann’s Function in the Number of 1s
	Abstract
	The Busy Beaver Problem
	Ackermann’s Function
	Green’s Machines
	A Function Defined by Green’s Machines
	Conclusion
	References

