Experience with GUI Programming in Lower Level Classes

Curt Hill
Mathematics Department
Valley City State University

Curt_Hill@mail.vesu.nodak.edu

Abstract:

The Graphical User Interface is now the most familiar, yet many introductory
programming classes ignore it. Windows programming has been an important part of
CS1 at Valley City State University since the fall of 1997. This approach offers both
opportunities and dangers to instructors and students. The success of teaching this
interface in the introductory classes, often hinges on the use of a development
environment that supports it well and is easy enough for students to use.

Introduction.

The Graphical User Interface (GUI) is extremely pervasive but its use in introductory
computer science classes is not. The use of a new approach in any course must be
justified by the benefits that such an approach will give to either the students or faculty.

There are many good reasons to be programming with the Graphical User Interface. The
GUI is now the most common user interface, which in itself argues for its use in the
introductory programming class. Students are quite familiar with this style of interface
and tend to lose motivation when forced to generate batch mode programs or a console
interface. The implication of using only the console interface is that programming is too
difficult for them, which is not the message they should hear in the first class. Instead
when they write with a graphical user interface they see themselves as accomplishing
something useful which greatly increases their motivation. Many students will not
become professional programmers, but almost all will receive some benefit if they can
write simple programs to aid them in their chosen careers. They will not usually write
such programs if they can only write them using a console-style interface. Potential
employers will also be more likely to be impressed if the applicant has demonstrated
programming using what is now the conventional interface. Those students who will join
the craft need to be exposed to the types of sophisticated tools that they will use later.
There are some additional advantages that will be considered later.

However, there are several good reasons not to use a GUI in the early programming
classes. There is the quite reasonable concern that too much time will be spent on the
graphical user interface and not enough on the traditional topics of the class. An easy to
use programming environment is required for any mode of programming in the
introductory classes. The console mode environments tend to be inexpensive or
widespread, while the corresponding windows environments are usually proprietary
products. Therefore they generally cost the student or the institution, a non-trivial
consideration. The worst but perhaps most common reason is instructor anxiety.
Language syntax and semantics have not changed that much since the early days,
however the environment has. Learning the use of this paradigm and the needed tools
puts additional stress on faculty who are sufficiently busy already.

Early experiences with the use of GUI

Valley City State University has been a laptop institution since the fall of 1996, making it
the second such university. Each incoming freshman is issued a laptop computer, which
is theirs to use for the duration of the term. The student receives the laptop after an initial
one-hour presentation and is required to take a computer literacy class, which most take
or pass out of in their first year. The laptops have a standard suite of programs, which in
the last two years included Microsoft Windows 98, Microsoft Office, Netscape
Navigator, Novell Netware and Novell Groupwise. Generally students entering the

programming classes are computer literate. This type of sophistication has made it
difficult to stay with console-based programming.

The frustration of teaching console-style programming in a predominantly GUI
environment became obvious to this instructor in the first year laptops were the norm.
Therefore in the Spring semester of 1997 the programming topics course, a junior level
class, was modified to teach not a new programming language but windows
programming using C++. There were no tools available to ease the process. The
cumbersome coding needed made the “Hello World” program several hundred lines.
Since every windows program had certain parts in common: a minimum set of includes, a
WinMain function, a function to register the window class, a function to initialize the
window, a function to contain the message loop it was concluded that there must be
several better ways of doing this. Therefore a program called WinShell was written and
distributed to the students of this class that would jump started the process. It collected
the input of several dialogs and then generated the shell of a Windows program. This
generated program would have a menu, dialog boxes and event handlers for each of the
menu entries, buttons or other controls, but no logic as to what to do in each event
handler. When the generation was complete the student would arrange the items in the
dialog box and add all the logic needed. Although this greatly eased the problem of
generating a Windows program, it was not easy enough to use to throw into the mix of an
introductory programming class.

Wolz, Weisgarber, Domen and McAuliffe [1] decry the minutia needed to master GUI
systems and their objections are quite valid. These were exactly the types of problems
that even the WinShell program failed to control. However, some of their objections are
diminished by the introduction of better sets of tools. These tools make the programming
much easier, but tend to make the environment somewhat more complicated. Generally
the tradeoff is still advantageous.

It became obvious that better tools were indeed available. In the following term, Fall of
1997, Borland’s CBuilder software was used in the introductory class. In that term GUI
programming was introduced late in the semester. It has moved around some since that
time and the current structure seems to have the right feel.

The structure of the introductory class.

The introductory programming classes constitute a three-semester sequence in C++. The
first of these is CSci 160, which is required or recommended for several majors. The rest
of the sequence includes CSci 161 and CSci 242, and are taken mostly by those seeking a
Computer Science minor. The first course, CSci 160, is where the students learn the bulk
of their windows programming. The students of CSci 160 are required to buy the current
version of Borland’s CBuilder compiler and development environment, which is
approximately fifty dollars at the bookstore. This becomes their property, can be installed

on other machines that they own or on future laptops and will be used in the subsequent
classes.

The first course conventionally starts with console programs when dealing with the early
parts of the language such as variables, expressions and simple input and output.
Functions available from libraries are discussed and used early, but the students do not
define any of their own until later in the course. Similarly, objects are used early but not
defined by the students until early in the second course.

The importance of the CBuilder package to this class starts with console-style programs.
The package generates parts of the program that are predictable, such as the includes, the
main function header, and the return statement at the end of the main function. Hence the
students only need to code the declarations, assignments and I/O statements, although the
generated parts are visible and discussed in class. This has the tendency to constrain their
thinking in a desirable way [2], so they will not have to deal with issues that they have
not yet built a suitable conceptual framework.

The next C++ topic is about the decision statements and it is usually in this segment that
the Windows programming paradigm is introduced. Typically this takes about two hours
of classroom demonstration to accomplish. The first topic of Windows is the difference
between the console model and the event model needed for a Windows program. This is
usually readily accepted since the students are quite familiar with the new paradigm
although from a user perspective. This discussion is seen as an advantage of this
approach, since it does not take very long and exposes them to differing paradigms from
a very practical viewpoint. The second topic is a demonstration of how a Windows
program is constructed using CBuilder. It should be noted that the classroom has a large
screen monitor that all the students may see and follow along on their own laptops. The
typical program that is first written is similar to the last console program, so that the
students may see the comparison in the code as well as the look and feel. This
demonstration takes about twenty to fifty minutes.

The way a program is constructed in CBuilder is simple for students to accomplish. There
is a palette of components such as buttons, labels, menus and edit fields. Each such
component is a predefined class with properties, methods and events. The student drags
the component from the palette to the window they are building and then sizes it by
dragging. When a button needs an event handler, the student types in the name they want
for the event handler or merely double clicks the component and a name is provided. At
that point the method for that event handler is generated in a way similar to the
generation of the main function. The properties may be modified simply at design time or
at run-time. Most students have their laptops with them and have written their first
Windows program during the demonstration.

In the first week of GUI programming the students are introduced to four basic
components: the form or window, a button, static text or labels and the edit box. The
students have used all of these before in applications, what they need to see is how to use
them in programs. This is usually how to set the properties or use the event handlers.

After the initial demonstration of windows components, the course advances on two
different fronts. The bulk of the class is on new language constructs, but new window
components are also considered. In one sense they are unrelated, but they are used to
reinforce each other. Shortly after the i £ statement is introduced the Message Box
component is demonstrated in the context of error checking; the switch-case is used
to handle a radio box component; and the multi-line edit box is used to hold the output of
for loop.

The preferred lecture style of the course is to divide a 50 minute class period into two to
four segments. Each segment deals with a different topic or activity. These segments are
chosen to put some variety in the class time. One segment may be the lecture on a
particular syntax issue, a demonstration of a program or program segment, or some group
work such as the tracing of a program or the completion of a program fragment.
McConnell [3] notes that student interest wanes after as little as 10 minutes and
this changing of topic and tone seems to help in this regard.

The total time spent on the windows programming aspect of the class is hard to estimate
since it is spread over the whole semester. Usually only one or two full class periods are
entirely used on the topic, but the total amount of time used in class on the topic is about
five to ten class periods of 50 minutes. This would be two to three weeks of a sixteen-
week semester. Moreover, as mentioned earlier the windows components can be used,
like many other applications, to emphasize topics that are more central to the course.

The students are more encouraged with their first windows program than a console
program of equal difficulty. The Borland components contain familiar behaviors that
make the program seem more sophisticated than the work put into it by the student. The
testing is somewhat easier as well. A loop-less console program must be executed
multiple times to test, while there is no such thing as a loop-less windows program. The
loops are built into the system code so the student may click a button multiple times and
observe the behavior.

There are clearly some negative consequences to this approach. One of these is using
features of the language before they have been introduced. All of the Borland
components are objects on the heap, thus the students need to use the —> pointer de-
reference operator well before they are introduced to pointers or class definitions. The
usual event handler has a pointer as a parameter, but that is less troublesome, since the
system generates the method header. The development environment can be a problem as
well. The environment is fairly complicated and students do not generally understand all
the things that they can do from it, nor the many ways they can damage their work. In
order to compile a typical windows program, five files are required: the two C++ files, a
header file, a data form (which captures the shape and arrangement of the window and
translates into the resource file), and a project file (which includes make instructions).
These five are required to be emailed to the instructor for grading and sending the wrong
set is a common occurrence. Another common problem is establishing the wrong event
handler. Deleting this method requires a fix to the header file, which the students do not

usually see, let alone edit. These problems are annoying but not outweighing the
advantages.

The college has an electronic portfolio requirement. Each student is to amass evidence of
their education as they advance to their degree. This portfolio is usually organized as a
presentation or web site on a CD ROM and then is available to supplement their résumé
in job applications. Courses that are important in major or minor programs often have a
portfolio project, which should demonstrate accomplishments towards their careers.
Usually the later classes have the better projects, since the skills learned in later classes
better match the skills desired by employers. However, the fall of 2001 CSci 160 class
had a portfolio project that was a useful program with several desirable characteristics.

The project was to produce a windows program that calculated the payment and
amortization table for a loan. The interface used most of the commonly seen controls
such as labels, buttons, data entry boxes, multi-line memos and menus. The code also
demonstrated several common techniques: verification of inputs, a non-trivial
calculations and multiple computations within a loop. This was not the size of a term
project, most of the students took only about a week on it, but in a single program it
shows many of the things that they were to learn in the first programming course. Screen
shots of this project are shown in the appendix.

A brief literature review.

This paper reflects one instructor’s attempt to keep an introductory course current and
relevant as the computing environment changes. There is no claim of being the first to try
such techniques. Rather there have been several papers published that show the progress
on this frontier. Several of these will be now mentioned and briefly discussed.

There are several who have used in C++ in their classes, with a suitable development
environment. Woodworth and Dann [4] describe teaching CS1 with Borland's
C++Builder. They cite the market opportunities for GUI programs and
programming. Mutchler and Laxer [5] document using Microsoft Visual C++ in their
CS 1 class at Rose-Hulman. They sought to do so to generate enthusiasm in their students
by generating graphic and multimedia applications. Szuecs [6] used Borland's Object
Windows Library but in a successor of CS 2. The intent was to expose students to
creating contemporary user interfaces.

Java is a more recent language with a sophisticated event handler model and better
platform independence. Bruce, Danyluk and Murtagh [7] used Java in their version of
CS1. They argue that this is current paradigm of programming so should be taught
initially to students. Wolz and Kaufman [8] attempt to simplify the usual Java I/O with a
toolkit in their CS1.

Rasala [9] promotes the idea of a toolkit in the first course. He cites toolkits written in
C++ and Java at various institutions. The Borland Visual Component Library or Object
Window Language and the Microsoft Foundation Classes are all toolkits but intended for
professionals, while these are for students.

Conclusions.

The key to teaching GUI programming in the first programming class is a development
system and framework that makes it easy enough for a student to use without devoting a
substantial portion of the class time. If that condition is satisfied then the extra work is
worth it and all the problems are manageable. Several such systems do exist for various
programming languages.

References.

1. Wolz, Ursula, Scott Weisgarber, Daniel Domen and Michael McAuliffe (1996).
Teaching introductory programming in the multi-deia world. Proceeding
of SIGCSE Integrating Technology into Computer Science Education
Technical Symposium on Computer Science Education, June 1996 at
Barcelona, Spain, pp. 57 - 59.

2. Buck, Duane and David J. Stucki (2000). Design Early Considered Harmful:
Graduated Exposure to Complexity and Structure Based on Levels of
Cognitive Development. SIGCSE Technical Symposium on Computer
Science Education, March 8 - 12, 2000 at Austin, Texas, pp. 75 - 79.

3. McConnell, Jeffrey J. (1996). Active learning and its use in Computer Science.
Proceeding of SIGCSE Integrating Technology into Computer Science
Education Technical Symposium on Computer Science Education, June
1996 at Barcelona, Spain, pp. 52 - 54.

4. Woodworth, Pan and Dann, Wanda, 1999. Integrating Console and Event-
Driven Models in CS1. SIGCSE Bulletin, March 1999, pp. 132-135.

5. Mutchler, David and Cary Laxer (1996). Using multimedia and GUI
programming in CS 1. Proceeding of SIGCSE Integrating Technology into
Computer Science Education, June 1996 at Barcelona, Spain, pp. 63 - 65.

6. Szuecs, Laszlo (1996). Creating Windows Applications Using Borland's OWL
Classes. SIGCSE Bulletin, February 1996, pp. 145-149.

7. Bruce, Kim B., Andrea P. Danyluk and Thomas P. Murtagh (2001). Event-
driven Programming is Simple Enough for CS1. Proceedings of SIGCSE
Integrating Technology into Computer Science Education, June 2001 at
Canterbury, UK, pp. 1 - 4.

8. Wolz, Ursula and Elliot Koffman (2000). A Java package for Novice Interactive
and Graphics Programming. Proceeding of SIGCSE Integrating
Technology into Computer Science Education Technical Symposium on
Computer Science Education, June 27 - July 1, 1999 at Cracow, Poland, pp.
139 - 142.

9. Rasala, Richard (2000). Toolkits in First Year Computer Science: A Pedagogical
Imperative. SIGCSE Technical Symposium on Computer Science
Education, March 8 - 12, 2000 at Austin, Texas, pp. 185 - 191.

Appendix.

The following graphic shows the window of the loan program written by Brandon
Flowers after the calculation button was clicked.

:mm

| Frngipal [0 ritarast Faba [19 Leregth of Loan [Years]:

{

|
Ea Ho Fomeniisd rhedFod Picgel Pod HeaBomee | =)
T] 5119 15T nEnan
f =2 =2 omn
Ta Y
m e mria I EYTEIE] Calciukate
Lk] ST 1R PN
17 e s 1241 79 1116141
12 0 Bin | bR E] 1103553
T] T 15T 412540 12
1% 170 B {LEliE] T pabR k] Total nterasi
1k o] LT 5T 04434 Pl =
1T e B2 T 110 Ea
[(I sal 55011 LIS N £1. 41770
e W P 45700 54
p [E0 7 B R j el
Fyl F] S0 JEER. R
Ery e L] T 6 R 45
Hl F= o ST 15557 FEEE
| |3 e T] 156 £ 556 71
-] ol X3 5 EEa
A e 12400 1A 15500 4
Eal 7 (R A b i ey
F: oo] HEN;] | L] 44 FB1
= e - =T 0
E] e] HEE ;] T L] 2R
n 5137 1571 .73 FEE I
Xz i B {REIE] bRl =E R
DB s s 15810 15N
k) 1 Bl Baad o 111K %
£ said 15050 AEED Furt
E e 2 1 n0n j

The following portrays the loan program of Edgar Garcia after the Help About menu item

had been clicked.
et
| rie ree
Aaraams bawigesadd Arpsal wdries? i Tem of thee k=an jranthi])
[0 [45 [%
N EE T AL a
| M $3EEE EME JEaEH
i §9M 34 P55 $SEDES JAEE1SS
i = SO 94 T4 BSED MR 4IRS
[Fel PR 17 SRR fTRME
[i MM AN SR WSRIS
] B DR 1Y __dEER e R
;t- I T N ot thinprogran.
I 2 25949 1B
B R 1971 This program wes wrikten by Edosr Garcis for Curt's Hill C4++ Class
i F L TE T L - =
£V T L
Con amaa f1an | : I
i E gl 94 1103
o kx] §594 34 $ABd T T0 STooT T
3?I- M SREA 4SERA0 18337
i £ MG pad 4RS00 gRa TR
I £ PR R 1SR Wim
|1mrmu pead i 514177 -
Csiculsis it |

I would like to acknowledge and thank both Brandon and Edgar for allowing the use of
their programs in this paper.

