
Developing A Public-domain Question Database for Physics Courses

Christopher D. Wentworth and Mark Plano Clark
Department of Physics

Doane College
Crete, Nebraska 68333

Evelyn T. Patterson and David E. Bell
Department of Physics

The United States Air Force Academy
USAF Academy, CO 80840-6254

Gregor M. Novak
Department of Physics

 Indiana University-Purdue University Indianapolis
 Indianapolis, Indiana, 46202

Abstract

College physics course environments, particularly at the introductory level, have become considerably
more complex than a generation ago. The development of new information technologies and an
expanding research base in physics education have produced dissatisfaction with a traditional teacher-
centered, textbook driven curriculum. In particular, homework assignments need to reflect and
enhance the total curriculum experience, not just what is in a textbook. Instructors need flexibility to
try new kinds of questions quickly, get the benefit of rapid feedback from student performance, and
share experiences with the wider physics education community.

These considerations have led us to develop a public domain question database with software which
supports using the database in a web environment. Here we discuss issues in design philosophy,
details of file specifications, an overview of the web delivery software, and some preliminary
formative evaluation of using the database.

The design characteristics have been influenced by our desire to have a system that is easy to
distribute to a variety of computer platforms and web-server environments, can be adapted easily as
new question types are invented, and can make available an evolving collection of information about
question use that can aid instructors in doing action research related to their use of homework
assignments. These desired characteristics have led us to define the database using XML defined
document types, with the ability to incorporate multimedia files and Java applets. Questions are
created, edited, and assembled into web-based assignments using a software package written in Perl.
Assignments can be classified into different categories: pre-class assignments, post-class homework,
extra-credit, and quizzes. The database and delivery software will work on Unix, Windows NT, and
Macintosh platforms.

Our preliminary data on using the database will help in developing an improved version. We will
discuss the different kinds of web assignments which can be used and how they support the
curriculum. Questions related to maintaining a distributed data base will be explored.

I. Introduction

We live in interesting times. Perhaps this is always true, and therefore, not a very profound statement,
but for people involved in physics education two trends contribute to making these particularly
interesting times. A large body of work in physics education is coming together with other work in
the cognitive sciences to give us a valuable framework within which we can address questions of how
best to teach and learn difficult physics concepts. At the same time, the development of web
technology is giving us a greatly expanded ability to influence our students outside of the formal
classroom. The convergence of these trends suggests an expanded set of opportunities for effective
teaching. In this paper, we will be concerned with exploring the rationale and the practicality of some
of the opportunities connected with web-based assignment systems.

At least since the 1980’s, researchers in physics education have been concerned with what is really
going on in people’s minds when they are introduced to physics concepts. A reliable body of
evidence on these thought processes has shown that there is divergence between what a teacher thinks
is being communicated in an instructional context and the meaning that a student actually carries away
from that experience.1 Students begin a physics course with a model of the world already in mind,
and instructional experience has too often left that model intact rather than moving the student forward
toward a physicist’s conception of things.2

Work in the cognitive sciences is beginning to give educators a theoretical framework for
understanding some of the discoveries in physics education research and practical lessons for how to
approach teaching physics.3 Current cognitive research supports the idea that people do organize their
experience into patterns or mental models: behaviorism is out. So a student is not a tabula rosa. An
instructor should be aware of students’ pre-conceptions and help students to become aware of them
also. Another principle supported by cognitive studies is that our mental models control how we
incorporate new information. As Edward Redish suggests3: we find that it is easy to learn something
that matches or extends an existing model, or, to put it another way, “it is hard to learn something we
do not almost already know”.

One teaching strategy that results from these principles has been called the “given-new principle.”4

This strategy suggests that the new concept should be presented in a familiar context. We need to
establish this context first and then introduce the new concept. Teachers are challenged to learn their
students’ mental models and establish a familiar context often with no real information other than
instinct and perhaps years of experience in working with a particular clientele.

Another principle that comes from both physics education research and more general cognitive
science research is that students can achieve the greatest development of their mental models of
physics phenomena when instruction is carried out in a way that Richard Hake defines as “interactive
engagement.”5 Such instructional methods are

designed at least in part to promote conceptual understanding through interactive
engagement of students in heads-on (always) and hands-on (usually) activities which yield
immediate feedback through discussion with peers and/or instructors…5

The results of research in physics education and cognitive sciences have created dissatisfaction among
many physics teachers. No longer are we satisfied with just explaining to our students the true nature
of reality and assigning homework problems from one of a dozen mass produced textbooks that are
difficult to distinguish from each other. We must construct learning environments where both
teachers and students can gain understanding of the pre-existing mental models, where teachers can
establish that familiar context in which learning best occurs, and where students are challenged to
create new mental models by engaging in activities that promote individual reflection and
peer/instructor dialogue.

Now it is time for web technology to step on stage. Whether it is coming from stage left, stage right,
or directly from the audience, we do not know. But it is coming, and it offers an opportunity for
establishing feedback loops between students and instructors that can help us understand our students’
mental models before they get to class, build a context for learning, and provide feedback for applying
new concepts in a quick and efficient manner. The technology also offers an opportunity to collect and
share data on student thinking that can be the basis for practicing teachers to understand and modify
their own teaching.

In the rest of this paper we will discuss one use of web technology that facilitates creating the learning
ecology described above. The technology discussed here includes the creation, use, and sharing of a
physics question database that allows web assignments which provide the needed feedback loops and
support an interactive engagement environment. We will discuss different uses of web delivered
questions that support the pedagogical framework mentioned above, design issues that determine the
format of the database, and the supporting software which allows creating questions and assignments,
delivering assignments to students, and sharing data between instructors.

II. Designing The Database

Our use of web-based assignments has very little to do with distance learning. We are using web-
based assignments to build a more productive ecology for courses that meet in a formal classroom
several times a week. Following the framework described above, instructors must try to understand
pre-conceptions which students have before they arrive in class and then adjust the formal
instructional time based on this data. Students also must be aware of their pre-conceptions to facilitate
changing them. Instructors must try to establish a familiar context for students to share when they
arrive at class. These pedagogical needs suggest that a constructive practice would be to have students
do a pre-class assignment the results of which are available to the instructor before class so that they
can be used for planning the class. Web technology allows this kind of assignment to be made and
completed in the time constraints provided by the formal class. This kind of feedback loop between
students and instructor has been called Just In Time Teaching.6 The pre-class assignments are called
“Warm-Ups” at Doane College and IUPUI and “Pre-flights” at the United States Air Force Academy.

The pedagogical framework described in the introduction also requires students to engage in “heads-
on” activities that can lead to reflection and discussion. Traditional homework assignments often do
not satisfy this criterion. Using computer-based multimedia capabilities such as digitized video or

computer simulations allows building questions around a rich context that requires students to go far
beyond looking up an equation in the textbook. Web technology allows us to deliver multimedia
based questions in a platform independent fashion. This gives us an active learning alternative to
textbook problems when we make our normal post-lesson homework assignments.

Using a web-based question database can also facilitate action research by instructors. If instructors
could make an assignment and easily share the responses with other instructors then discussions might
be initiated regarding what factors produced the best performance. A web-based question database
offers the possibility of sharing performance results with people at many institutions. Institutions
sharing the database could contribute new questions as well as performance data on existing
questions. This offers a collaborative model for curriculum development.

Our collaboration for the design and production of the initial question database involved three rather
different kinds of institutions: Doane College, a small liberal arts college, Indiana University-Purdue
University – Indianapolis, an urban university, and the United States Air Force Academy. Not only
are the institutions rather different educational environments, but the computing environments were
also all different. Doane uses a Windows NT server, IUPUI uses a Macintosh server, and the USAFA
uses a Unix web server. We needed a database and supporting software that could be used on all of
these platforms with a variety of possible web server applications.

The need for serving this variety of environments pushed us to choose a flat (text) file database
structure with supporting software written in Perl. This approach seemed to offer the most flexibility
for constructing a system that could be used by everyone and that could be developed in a reasonable
amount of time by physics professors who were not database experts. Flat files can be easily
exchanged from one computing environment to another. Manipulating them can be achieved with
relatively little cost in programming effort by using Perl, which is particularly well-suited as a
programming language for doing character string manipulations.7

Another design characteristic of our database was that it had to be easy to add to the structure. In
other words, we did not know with certainty all the kinds of information that should be included in our
database. We did not even know all the kinds of questions that we wanted to use, because our
expectation was that people would be creative and invent new question types. Clearly we needed to
design the database so that it could evolve with a minimum of effort.

This design characteristic suggested that we use an XML8 (extended mark-up language) document
definition for our question database. XML is a simplified subset of SGML, and allows information
providers to define their own tag and attributes for web documents, and to define an easily extendible
document structure of arbitrary complexity. The language has been of particular interest to
information providers who face the need to integrate different databases in a single application and to
deliver information from databases over the web in an efficient manner. Documents written in XML
are relatively easy for both humans and computers to read and interpret. We believed that defining an
XML file structure for our question database would give us flexibility for adding to the structure in the
future, and it would provide a common file format for merging questions from other databases which
use proprietary file formats.

In addition to defining and creating a question database, we needed to provide a means of combining
selected questions into assignments, delivering them to students, and storing the responses for later
use. XML provided a means of defining the assignment database files and response database files.

III. Directory Structure and File Format

 The question database itself is a flat file collection composed of one file for each question. These
files are arranged in a directory structure that reflects a classification of physics subject matter known
as the PIRA-X scheme. The PIRA-X scheme is an extended classification system devised at the
United State Air Force Academy based on the PIRA scheme created by the American Association of
Physics Teachers. Associated multimedia files are also classified by this scheme. So, the database
itself contains the following sub-directories:

audios

classes

images

questions

videos

Each of these directories has nine sub-directories each corresponding to a major entry in the PIRA
classification. The “classes” directory contains Java class files.

The filename for a question will be the PIRA-X code with an appended question number and a ‘txt’
extension. For example, a question on phonons could be contained in the file 4a60_001.txt.
Institutions other than the USAFA will add an institutional code to the name. For example, at Doane
College we are using the form

4a60_doane_001.txt

This should facilitate merging questions from different institutions.

The XML tags and attributes for the question files are defined in the Document Type Definition
contained in Appendix 1. Here is an example of a question coded with the XML tags.

<question type="B" category="application" >
<topic code="1A40" name="Vectors"></topic>
<filename>
1A40_Doane_010.txt
</filename>
<creationDate>
19981016
</creationDate>
<version>
1
</version>
<text>

Velocity and acceleration are examples of a mathematical object called
a <_>.
</text>
<keyAnswer>vector</keyAnswer>
<instructorNote></instructorNote>
<author institution="Doane" name="Chris Wentworth"></author>
<keyWords>vectors</keyWords>
<history></history>
</question>

This question is a fill-in-the-blank type of question. The <text> tag contains the actual text of the
question. This text could contain HTML code, if required. The “<_>” tag indicates where the blank
will be located. The <keyAnswer> tag contains the required answer to be used by computer grading
of the response. If there is a list of possible answers, each is separated by a comma. The
<instructorNote> tag can contain notes about the question and its answer that could be seen by the
instructor, but not by a student. The <keyAnswer> might be seen by the student, if the instructor
chooses to use that kind of feedback. The <keyWords> tag can contain indexing information. The
<history> tag is intended to contain results of using the question sent in by various institutions.

At this time, the system can accommodate essay, multiple choice, numerical, and fill-in-the-blank
questions. The extendible nature of XML will allow us to add additional question types in the future.

We have a system for constructing, delivering, grading, and storing assignments that use the question
database. We will describe it in the next section. This system requires that each course have an
assignment file where questions associated with the assignment are specified. This file is also coded
with an XML tag system. The document type definition is included in Appendix 2.

Here is an example of an assignment file.

<assignments>
<lesson number="1">
<name>
Warm Up #1
</name>
<instructions>
Please review chapter 3 in the textbook before trying this assignment.
</instructions>
<dueDate>
15:30-5-10-1998
</dueDate>
<keyAvailable value="never">
</keyAvailable>
<feedbackBefore type="name"></feedbackBefore>
<feedbackAfter type="summary"></feedbackAfter>
<randomMethod>
2
</randomMethod>

<questions>
<question points=”5”>
1A10_001.txt
</question>
<question points=”5”>1A10_002.txt
</question>
<question points=”2”>1A10_004.txt
</question>
</questions>
</lesson>
</assignments>

This particular class assignment file contains one web assignment in the <lesson> tag. Additional
assignments could be included in the same file by using more <lesson>…</lesson> tags. Information
that can be included within this tag includes the assignment title, special instructions to be printed at
the beginning, the due date/time, whether the key can be made available to the student, what kind of
feedback to give students after they submit their assignment, the way in which random numbers will
be used, and the list of questions themselves. Notice that each question can have an instructor
designated value, which is given in the “points” attribute of the question tag.

The assignment system described below stores student responses in a file that uses the tags defined in
Appendix 3. Each course has a directory for its student response files. Each student has their own
response file, in which all responses for assignments made in that course will be kept. Here is an
example of a student response file.

<responses>
<lesson number="1">
<keyNew>
<qKey qName="Q_1" type="E" points="5">While the change in position and the change in time
between two events will generally depend on the reference frame in which the
position and time measurements are made, the spacetime interval does not
depend on the reference frame. You always get the same number no matter
which (inertial) reference frame is used. It is independent of the state
of motion of the observer.</qKey>
<qKey qName="Q_2" type="N" points="2">1.1,0.1</qKey>
<qKey qName="Q_3" type="MC" points="2"><mcAnswerKey
aType="D">meter</mcAnswerKey><mcAnswerKey
aType="D">second</mcAnswerKey><mcAnswerKey
aType="D">year</mcAnswerKey><mcAnswerKey aType="C">all of the
above</mcAnswerKey><mcAnswerKey aType="D">none of the above</mcAnswerKey></qKey>
seed=2
</keyNew>
<key>
<qKey qName="Q_1" type="E" points="5">While the change in position and the change in time
between
two events will generally depend on the reference frame in which the

position and time measurements are made, the spacetime interval does not
depend on the reference frame. You always get the same number no matter
which (inertial) reference frame is used. It is independent of the state
of motion of the observer.</qKey>
<qKey qName="Q_2" type="N" points="2">1.1,0.1</qKey>
<qKey qName="Q_3" type="MC" points="2">
<mcAnswerKey aType="D">meter</mcAnswerKey>
<mcAnswerKey aType="D">second</mcAnswerKey>
<mcAnswerKey aType="D">year</mcAnswerKey>
<mcAnswerKey aType="C">all of the above</mcAnswerKey>
<mcAnswerKey aType="D">none of the above</mcAnswerKey></qKey>
seed=2
</key>
<response qName="Q_1" score="5">Space & Time are really one thing
Motion is seperate from the observer
Do I know what this means? NO!</response>
<response qName="Q_2" score="2">1.15</response>
<response qName="Q_3" score="2">all of the above</response>
<startTime>Fri Jan 29 12:04:50 1999</startTime>
<endTime>Fri Jan 29 12:07:43 1999</endTime>
</lesson>
</responses>

This particular response file contains responses for one assignment. If the student had completed
more assignments, the responses would be contained in the same file within another
<lesson>…</lesson> tag.

IV. The Supporting Software

While developing the question database has been our primary interest, using the questions in real web
assignments requires some kind of delivery and grading system that is compatible with the database.
We have developed an assignment system that can be used with the question database to assemble
web assignments from the database, create new questions, deliver assignments to students, grade some
questions, and store all student responses for instructor viewing. The assignment system is called
WebWorks and will be available at no cost to non-commercial users.

The system has been designed with the intention of providing multimedia-based questions (images,
video clips, Java-based simulations) and mathematically oriented questions, in addition to more
traditional multiple choice, fill-in-the-blank, and essay questions.

The code is written in Perl, with an expectation that it can be used on Unix, Macintosh, and Windows
NT servers. The code draws on ideas developed by faculty at the USAFA, including David Bell,
Dana Kopf, and Mike Hawks, in their pre-flight system, and by Larry Martin, author of
WWWAssign.

The system consists of 6 Perl scripts, which handle creating, delivering, grading, and viewing
assignments. Two modules contain common functions. There is a student web page, which serves as

the student front-end to the system, and allows them to get a new assignment and view their
submissions on previous assignments. There is an instructor web page, which serves as the instructor
front-end to the system, that allows them to create assignments, view the student submissions, and to
gade essay questions. The delivery, grading, and viewing scripts are named:

webworkedit.pl—This script is called by the instructor page, and allows an
assignment to be constructed from questions in the database or it allows the
instructor to create new questions.

webworkget.pl—This script is called by the student page and delivers an assignment
to be submitted by the student.

webworkgrade.pl—This script grades numerical, multiple choice, and fill-in-the-
blank questions and stores the student responses for a submitted assignment.

webworksview.pl—This script allows students to view previously submitted
assignments.

webworkiview.pl—This script allows instructors to view student responses.
Instructors can choose to get a simple listing of all students in a class with their
responses, or they can get a summary of student and class performance.

webworkessay.pl—This script allows instructors to grade essay questions.

Students enter the system from the student web page. They select their class, section, assignment type
and number, and enter their username and password. Submission of the form calls up the
webworkget.pl script, which serves up the assignment. Submission of the assignment calls up the
webworkgrade.pl script, which grades numerical, multiple choice, and fill-in-the-blank questions and
stores all responses in the student’s response file.

The student can get several kinds of feedback, based on what the teacher selected when constructing
the assignment. The system can send back a simple “Thank you” message, the total points earned for
the assignment (not including essay questions), or a detailed listing of missed questions. The type of
feedback will depend on the pedagogical intent of the teacher.

Instructors enter the system from the instructor web page. They select the class, section, assignment
type and number, and enter their username and password. They can select to see a simple listing of all
student responses from the class, see summary statistics for each student and the class on the particular
assignment selected, grade essay questions, or create/edit an assignment.

Selecting existing questions or creating new questions are easy with the editing script. The teacher
does not need to know HTML, although some knowledge of it can be helpful to add superscripts,
subscripts, and other formatting details.

After accessing the editor a teacher must:

- pick a topic, organized by PIRA codes.

- look at existing questions in that topic; select an existing question for inclusion in an assignment,
modify an existing question, or create a new question.

- when creating a new question, the author can provide an image (which is uploaded from the local
machine and named with a name that reflects the question code assigned to this new question),
question text, an answer, and other fields of interest such as comments to faculty who might use it.
Each piece of information is provided via text areas and radio buttons in a web page viewed by the
teacher.

- preview the question to see how it will look in a web-based assignment.

V. Formative Evaluation

We will look at a few observations on using the database.

The technical barriers of learning HTML, JavaScript, and server details can keep a faculty member
from using web based questions. Being able to author questions and then letting the software store
them in a database and deliver them to the students frees the faculty member to invest time in
appropriately dealing with the student responses to those questions. The Just In Time Teaching
philosophy requires that a teacher execute an extra step in preparing for class: review student
responses to the warm-ups (or preflights). If the software is not close to being effortless to use then
most faculty will not be able to fit the extra step into busy schedules.

Physics faculty at Doane College used the web delivery system without the editor for a semester. This
experience showed that only a high level of commitment to the idea of web based assignments can
overcome the difficulties of creating questions and assignments essentially from scratch. The editor is
a crucial piece of the database system.

In the USAFA physics department, both of the introductory courses and a good number of the upper
division courses now routinely use preflights, and this would not be the case were it not for the
software that makes the implementation of preflights so easy. Other departments are taking the
editor/delivery system and using it for their courses, too, so the impact of Just-in-Time Teaching is
spreading beyond physics, largely because of the software that makes this implementation straight-
forward.

Some of the student gains from using pre-class assignments (warm-ups or pre-flights) are described
elsewhere.6 Here we note some interesting student behaviors that may influence the success of using
web based assignments.

At Doane we have used warm-ups in a pre-unit fashion, one warm-up before each unit (about once per
week), and in a pre-class fashion, similar to the USAFA and IUPUI method. We believe the habit of
mind created by doing the warm-up before every class is critical to seeing a major effect of this
teaching strategy. When we did the warm-ups once per week, participation was never more than 80%
of the class, and sometimes much less: mainly because students forgot about the assignment. The
daily regimen helps create an expectation that students must do these assignments and facilitates them
being prepared for class.

We have also given regular post-lesson homework assignments over the web. For these assignments,
we have allowed students to get feedback on whether they answered non-essay questions correctly,
and we have allowed re-submitted assignments. In this situation students will often make many
submissions of the same question in an attempt to find the right answer. Based on the time stamps we
can surmise that not a lot of thinking is going on between submissions. It is possible that giving this
kind of feedback in the context of allowing re-submitted assignments is not very productive for
students in a pedagogical sense.

VI. Conclusion

 The question database and the assignment delivery system are evolving.. The next major step is too
develop the best procedure for sharing new questions and performance data between institutions. We
hope that this will produce collaborative curriculum development. Our experience shows that the
assignment system itself is easy enough to use so that other academic departments have shown an
interest in it. For example, the Geology Department at Doane College will be using the system
during the fall 1999 semester, and the German Department has also expressed interest. The ability to
use multimedia, such as audio files, in homework questions can be very powerful.

 Further information on the question database and assignment delivery system can be obtained from
the project web site.10

References

1. Arnold Arons, A Guide To Introductory Physics Teaching, John Wiley & Sons, Inc., New York
(1990).

2. I.Halloun and D. Hestenes, “The initial knowledge state of college physics students,” Am. J. Phy.
53, 1043 (1985).

3. Edward F. Redish, “Implications of cognitive studies for teaching physics,” Am. J. Phys. 62, 796
(1994).

4. H. Clark and S. Haviland, “Comprehension and the given-new contract,” in Discourse Production
and Comprehension, edited by R. Freedle, Lawrence Erlbaum Associates, Hillsdale, NJ (1975).

5. Richard R. Hake, “Interactive-engagement versus traditional methods: a six-thousand student
survey of mechanics test data for introductory physics courses,” Am. J. Phys. 66, 64 (1998).

6. Gregor M. Novak, Evelyn T. Patterson, Andrew D. Gavrin, and Wolfgang Christian, “Just-in-Time
Teaching: Blending Active Learning with Web Technology,” Prentice Hall, Upper Saddle River, NJ,
(1999).

7. Larry Wall, Tom Christiansen, and Randal L. Schwartz, Programming Perl, O’Reilly &
Associates, Inc., Sebastopol, CA (1996).

8. Norman Walsh, “A Guide to XML,” in XML: Principles, Tools, and Techniques, edited by Dan
Connolly, Travelers’ Tales Inc. (1997).

9. Larry Martin, “WWWAssign,” http://www.northpark.edu/~martin/WWWAssign/ , North Park
University, Chicago, IL. (1997).

10. “WebWorks Web Assignment Project,”
http://www.doane.edu/crete/academic/science/phy/jitt/wwproject.htm , Doane College, Crete, NE.

Appendix 1. Document Type Definition For The Question Files

<!ELEMENT question (topic , filename , creationDate , version , image*, text ,
mcAnswer* , keyAnswer?, instructorNote ?, author?, keywords?, history?) >
<!ELEMENT topic EMPTY>
<!ELEMENT filename (#PCDATA)>
<!ELEMENT creationDate (#PCDATA)>
<!ELEMENT image (#PCDATA)>
<!ELEMENT version (#PCDATA)>
<!ELEMENT text (#PCDATA)>
<!ELEMENT mcAnswer (#PCDATA)>
<!ELEMENT keyAnswer (#PCDATA)>
<!ELEMENT instructorNote (#PCDATA)>
<!ELEMENT author EMPTY>
<!ELEMENT keyWords (#PCDATA)>
<!ELEMENT history (#PCDATA)>
<!ATTLIST question

type (MC|E|B|N|S) #required
category (application|puzzle|review|test|warmUp) ‘application’ >

<!ATTLIST mcAnswer
correct >

<!ATTLIST topic
code CDATA #required
name CDATA #required >

<!ATTLIST filename
src CDATA #required >

<!ATTLIST image
src CDATA #required >

<!ATTLIST author
institution CDATA ‘unknown’
name CDATA ‘unknown’>

Appendix 2. Document Type Definition For The Assignment File

<!ELEMENT assignments (lesson?)>
<!ELEMENT lesson (name, instructions, dueDate , keyAvailable, feedbackBefore,
feedbackAfter, randomMethod, questions) >
<!ELEMENT name (#PCDATA)>
<!ELEMENT instructions (#PCDATA)>
<!ELEMENT dueDate (#PCDATA)>

<!ELEMENT keyAvailable EMPTY>
<!ELEMENT feedbackBefore EMPTY>
<!ELEMENT feedbackAfter EMPTY>
<!ELEMENT randomMethod (#PCDATA)>
<!ELEMENT questions (question*)>
<!ELEMENT question (#PCDATA)>
<!ATTLIST lesson

number ID #required >
<!ATTLIST keyAvailable

value (always|never|after) ‘never’ >
<!ATTLIST feedbackBefore

type (name | answers | summary | missed) >
<!ATTLIST feedbackAfter

type (name | answers | summary | missed) >
<!ATTLIST question

points CDATA ‘1’>

Appendix 3. Document Type Definition For The Student Response File

<!ELEMENT responses (lesson*) >
<!ELEMENT lesson (key, keyNew, response+) >
<!ELEMENT key (#PCDATA,qKey)>
<!ELEMENT qKey(#PCDATA)>
<!ELEMENT keyNew (#PCDATA,qKey)>
<!ELEMENT response (#PCDATA , comment*) >
<!ELEMENT comment (#PCDATA) >
<!ATTLIST lesson

number ID #required >
<!ATTLIST qKey

qName CDATA #required
type (MC|E|B|N|S) #required>

<!ATTLIST response
qName CDATA #required
score CDATA ‘none’ >

