
A Third-Semester GUI Programming Course

W. Douglas Maurer
Department of Electrical Engineering and Computer Science

The George Washington University
Washington, DC 20052

We describe a new curriculum for the first two years of an undergraduate program in
which the students learn full-fledged graphical-user-interface (GUI) programming in the third
semester. By full-fledged we mean that the students are expected to use object-oriented tech-
niques in C++ or Java and construct data structures that are sufficient to support a simple word
processing, spreadsheet, or data base program written for a GUI. Furthermore this curriculum
does not require any computer experience on the part of first semester students. The usual CS 1
and CS 2 are presented in the first and second semesters, except that they are done in C++, and
an unusual amount of effort has been expended (as described in another recent paper) to intro-
duce almost all of C++, and almost all of data structures, in one course in such a way that the two
subjects support and complement each other. In addition, there is in the first semester, for those
who need it, an introductory course in the use of a GUI, including word processing, spreadsheet,
data base, and paint programs.

We then proceed to the GUI programming course, which is based around a semester-long
project, involving as many GUI features as we can introduce in fourteen weeks. This includes
one week for the midterm and one week for the final examination, leaving twelve instructional
weeks, each of which involves two instructional units, as outlined below (Units 1 through 24).
The students have a choice of developing a simple word-processing system, a simple spread
sheet system, or a simple data base system. The instructional units are as follows:

Unit 1. Choose an internal format for your data. Note that the internal format is not what
appears on the screen; that is the window format (discussed later).

For a word-processing program, the internal format represents the document to be pro-
cessed. There is the text, and there is also the formatting (font, size, and style). Since formatting
typically applies to long stretches of text, the student has to devise a coding method for these.
Special characters, such as optional hyphens and paragraph marks, require codes. It will have to
be decided whether the text is internally organized by lines, by paragraphs, or by an entire docu-
ment.

For a spreadsheet program, the internal format represents the data currently in the spread-
sheet. Since spreadsheets are typically organized as sparse matrices (that is, most of the cells are
empty), the student will have to devise a sparse matrix representation. Each non-empty cell will
have to be marked as a formula cell or a data cell. Data cells can contain strings, which are easy
to represent. They can also contain integers or real numbers, and it will have to be decided
whether to represent these in binary or in character code format.

For a data base program, the internal format represents the records in the data base. There
will be a group of these records which may be organized in various ways (as a linked list, a dou-
bly linked list, a hash table, etc.). Each record in turn is organized into fields, but these have for-
mats which may be changed by the user at run time, unlike those of an ordinary record. A univer-
sal field representation will have to be chosen.

Multiple open files in any of these programs (more than one word processing document,
spread sheet, or data base open at one time) is actually quite simple; there is a short linked list of
all open files with pointers to internal descriptions for each.

Unit 2. Choose an external format for your data (that is, when it is on disk). Note that the
disk data format is not necessarily the same as the internal data format; in particular, if there are
pointers, you don’t want to write out the actual pointers on disk.

For a word-processing program, the student will have to decide whether to save space on
disk by keeping the data in compressed form. A typical compressed form involves four-bit codes
for each of the 15 most common characters (space, comma, period, and lower case e, t, a, o, i, n,
s, h, r, d, l, and u) and twelve-bit codes for the others (the four-bit code 0 followed by the eight
bits of the normal ASCII code).

For a spreadsheet program, the non-null cells are kept as records in some order (actually,
the order shouldn’t matter). Again, each cell is specified as either a formula cell or a data cell.
Since these cells have different sizes on disk, an indication, at the start of each cell, giving its to-
tal size should be included in the external format, although this will not be necessary internally.
There will need to be either an end-of-file flag or a special count variable indicating the total
number of non-null cells in the file.

For a data base program, there will be an external description of the fields in a data base,
followed by records containing the data. If these records contain integers or floating point num-
bers in internal format, care must be taken that machine alignment rules are followed when
intermixing these with character strings.

When there are multiple open files, external formats, of course, apply to only one of these
at a time.

Unit 3. Write an output function that writes your data, in your internal format, onto a file,
in the given external format. Assume, for the moment, that the name of the file is given as a
parameter.

For a word-processing program, this may involve conversion of the file to the given com-
pressed format. It should not be difficult to check whether a character is one of the special 15
characters, and to write out a four-bit code if it is. Otherwise, a four-bit code and an eight-bit
code are written out. A buffering routine for four-bit data is easy to write once the principles of it
are established.

For a spreadsheet program, it may be necessary to count the non-empty cells first, if such
a count is being kept on disk. Each cell is kept in any one of a number of formats, and an indica-
tion must be stored on disk, for each cell, as to what format it is in.

For a data base program, the internal format of a record may well involve pointers to its
various fields. We must remember not to write out the pointers, but only the fields.

In any of these cases, if the internal format is in error, produce a system-level error mes-
sage and quit.

Unit 4. Write an input function that reads your data from a file with a given name, in the
given external format, and puts it in the machine in your internal format. Again assume that the
name of the file is given as a parameter. Test the input function by reading one file, writing
another one, and then checking, within another program, whether the two files are the same.

For a word-processing program, it may be necessary, if the file is not organized by lines,
to organize it in this way as it is read in. If this is done, then formatting will probably need to be
determined and kept separately for each line. The length of a line, of course, depends on the for-
matting information. For a spreadsheet program, each cell is read in, its format determined, and
its data inserted into dynamic storage. For a data base program, the pointers that were taken out
of records when we wrote them to disk have now got to be put back in.

As for input, produce a system-level error message and quit if the input is in the wrong
format.

Unit 5. Here we handle errors in a more realistic manner than in the previous two units.

Learn how to use the resource editor (sometimes called a form designer) for dialogs. This
allows a user to design a dialog box, using graphical tools like those in a paint program. When
the dialog box is designed, it is given a name of some kind, by which it may be referenced later.

Set up an alert meaning that the given file is in the wrong format for reading. Learn how
to call the alert and use it in your program. Wait for the user to click OK and then terminate.

Unit 6. Learn how to use the graphical function package that comes with your system. Set
up another dialog, which is an opening screen for your application, and using as many of the
graphical functions as you can. It should have a Continue button. Call this dialog at the start of
your program; wait for the user to click Continue, and then continue with your program. The de-
sign of this should indicate what kind of an application this is.

Unit 7. Up to now we have assumed, when reading input and writing output, that the file
name is given as a parameter. This is not realistic, and in this unit and the next one we learn how
it is really done.

Learn how to use the standard open-file dialog. Use this dialog just before you read your
file. The dialog will return the name of the file to be opened; use this as a parameter to your file-
open routine.

Unit 8. Learn how to use the standard save-file dialog. Use this dialog just before you
write your file. The dialog will return the name of the file to be saved; use this as a parameter to
your file-save routine. Check whether the standard save-file dialog asks the usual question about
replacing an existing file with the same name.

Standard open-file and save-file dialogs are available with every GUI system, but non-
standard ones can often be purchased or are available as freeware or shareware. This may be a
good time to compare and contrast the features of various such dialogs.

Unit 9. Learn how to set up a window for your file. At this point in the project, the data
should be short enough that it will fit entirely on the screen. After you have read the data in, open
a window and then draw your data on the window. Make this data drawing into a function which
can be called when you want to re-draw your data after making changes to it. For now, however,
just put the window up on the screen before saving the file.

For a word-processing program, the window will have certain basic characteristics, such
as the margins on each side, single or double spacing, and whether the data is left justified, fully
justified, centered, or whatever. Once these are known, the document to be processed can be
drawn on the window. Produce another alert box, for the moment, to warn the user if the docu-
ment is too large for the window.

For a spreadsheet program, we will assume for the moment that there are only a few
columns and a few rows. Again the window will have certain basic characteristics, such as a
width for each column. For a formula cell, you will have to display the results of the formula.
This in general is a large computation, but for the moment we can assume only one operator,
namely +, so as to make it easier.

For a data base program, display just one record, having Next and Previous buttons in it.
Clicking on one of these buttons will cause the next record, or the previous record, to appear on
the screen. Each record will have to be drawn by a general function which scans the format of the
record and draws it accordingly.

Unit 10. Before we set up a menu, we will set up a dialog box with several buttons, which
does the same thing as a menu. These might be: Open a file; Save the file; Quit; etc. Put this up
at the beginning of your program and keep looping back to it.

At this point GUI systems differ as to how they detect mouse clicks on a window. Some
GUI systems will just give you back the X and Y coordinates of a mouse click on a window, and
then you have to decide what the user is clicking on. Others will let you define objects in the
window, and associate actions with clicking on these objects.

Unit 11. Write a function to display in your window only part of your data, as given by
parameters. Then implement a resizing box in your window, which resizes both horizontally and
vertically, as usual. Also implement dragging the window to various places on the screen.

For a word-processing program, note that resizing the window does not mean changing
the margins. The margins remain the same, but only part of each line is displayed. For a spread-
sheet program, resizing the window may mean that more or fewer columns are displayed on the
screen, and also that the last column may be only partially displayed. For a data base program,
resizing the window may mean that the single record on the screen is only partially displayed.

Unit 12. Put scroll bars in your window and implement those.
For a word-processing program, the display function must now be extended (if it has not

been already) to display only certain lines of the text. Which lines will be displayed depends on
the position of the elevator in the window. There are two possible conventions for what happens
when the elevator is at the bottom of the window — either the last few lines are displayed, or
only the last line, at the top of the window, followed by blank space. Horizontal scrolling is
optional here, for the moment.

For a spreadsheet program, both horizontal and vertical scroll bars are needed, and the
sparse matrix should be extended potentially indefinitely in both directions.

For a data base program, we now change the display routine so that, instead of displaying
only one record at a time, it might display more than one. All the records in a file are treated as if
they followed one another vertically, like text in a word processing file. Vertical scrolling is then
handled much as in a word processing program; horizontal scrolling is again optional.

Unit 13. Extend the dialog box of unit 10 above to allow the opening of several files at
once. Now draw several windows at the same time on the screen. This is done by drawing the
one at the back first, then the others in order, with the one at the front being drawn last.

Now implement the convention that, if you click on an inactive window, it becomes
active. This means that it comes to the front; all the windows from the former position of this one
up to the front have to be redrawn. Add to your dialog box a Close button, to close the active
window. In this case, again all the other windows must be redrawn in order. Also put a close box
in every window, which works in the usual way.

Unit 14. Implement selection in various ways (by one click; by a click and then a shift-
click; by a click and then a drag). Implement highlighting for selection (use yellow). When you
select something, move it to a clipboard area. Add to your dialog box a Show Clipboard choice.
Add to your dialog box a Select All choice.

This is most important for a word processing program, because large areas of text can be
selected, but it can also be used in a spreadsheet or a data base program. The Select All choice,
indeed, is optional for spreadsheets and data bases, and might be replaced by something which
merely selects one entire cell in a spreadsheet, or one entire record in a data base.

Unit 15. Implement deletion of a selection. This will imply deletion from your internal
data structure and then redrawing. Add to your dialog box a Cut choice, which deletes a selec-
tion. For a word processing program, the redrawing applies to the entire document; for a spread-
sheet, it applies merely to one cell; for a data base, it applies merely to one field within one
record. Ways of deleting several cells from a spreadsheet, or one or more entire records from a
data base, might also be implemented.

Unit 16. Implement paste. This will imply insertion into your internal data structure and
then redrawing. Add to your dialog box a Paste choice, which inserts a selection. Redrawing is as
with Cut.

Unit 17. In the end, a GUI application is not realistic without Undo; and yet Undo is one
of the hardest functions to implement, and takes the most time. There is single-level Undo and
unlimited Undo, each with its own techniques. A single-level Undo function is generally accom-
panied by a Redo function, which “undoes the Undo.” Remember that you can’t undo a file op-
eration like opening, saving, or printing. As a first cut at this, add to your dialog box an Undo
choice, but, when the user undoes anything, just bring up an alert box that says “You cannot
undo this” and lets the user click OK.

Unit 18. Rewrite as many of the earlier functions as you can, to implement the single
level Undo. These include:

• For deletion of a selection: Delete it but save it somewhere, together with an indication
of where you deleted it from. To undo, just put it back in.

• For pasting: Paste but remember what it looked like before pasting. To undo, just set it
back again.

• For typing: This is a special case of insertion. If a selection was highlighted just before
you started typing, then, when the typing is undone, not only is it taken out but the previously
highlighted selection is also put back in.

Unit 19. Find out how the print-window function works in your GUI. You might have to
break your image up into pages by itself, to get it printed. Find out how the system print dialog
works. Add a Print button to your dialog box, to print the currently active window (or the win-
dow with the focus).

For a word-processing program, if you have implemented vertical scrolling, then the en-
tire document may be broken up into pages, and each page printed separately. You might, at this
point, wish to implement a page-break facility.

For a data base program, each page is either one or more entire records in the data base.
Do not break up a record across pages unless one record is so large that it will not fit on a page.

For a spreadsheet program, there is a problem if there are so many columns that they will
not all fit on a page. In that case, do only the first few columns first, then the next few, and so on.
Repeat the process if there are too many rows to fit on a page.

Unit 20. Set up a menu bar. It should have File, Edit, and Window menus. The Window
menu should allow you to make any window the current window. The Edit menu should have
Undo, Cut, Copy, Paste, and Select All. The File menu should have New, Open, Close, Save,
Save As, Print, and Quit. Now use this instead of the dialog box that you have been using so far.

Unit 21. Find out how your GUI implements key equivalents of menus (if at all). Put in
some key equivalents that resemble others that are common on your GUI.

Unit 22. Implement a sort function for your data. Put a Sort item in your Edit menu.
Remember to redraw the window after you sort. If nothing is selected, sort the whole file; if
something is selected, sort only that part.

Unit 23. Implement graying and ungraying of the Save, Cut, and Copy menu items. To
gray an item means to make it appear on its menu in gray, which disables it, so that it cannot be
selected. To ungray an item means to make it appear in black again, so that it is reenabled. This
is done as follows:

For Save, the item should be grayed as soon as a Save takes place. It is ungrayed when
any further change is made to the document.

For Cut and for Copy, the item should be grayed if there is no highlighted selection; it
should be ungrayed when a selection is highlighted.

Unit 24. Demonstrate your project.

