
Student Involvement in Designing a Network Encryption
Algorithm

Ronald Marsh, Ph.D.

Department of Computer Science & Operations Research
North Dakota State University

Fargo, ND 58105
rmarsh@plains.nodak.edu

Abstract

In an effort to expose computer science students to the issues
surrounding computer security and computer science research
topics, freshman level computer science students were assigned
the task of designing and implementing an algorithm for
encrypting ethernet packets. The goal was to develop an
encryption method that could be used to automatically encrypt
all ethernet packets at the network or transport layer.

Several assumptions were made to insure that the task would be
appropriate for a freshman level class. The most significant
assumption was that the encryption method would only be required
to provide "minimal security". The second most significant
assumption was that students could simulate the network by
reading and writing text files.

In addition to a review of the designs submitted by the
students, we also present results of a survey taken by the
participating students. The survey provides feedback as to what
the students thought of the task, if they felt they arrived at a
successful solution, if they would like to do something similar
again and if the task had changed their perceptions of computer
science.

Introduction

To provide early exposure to the issues surrounding computer
security, to software engineering and to computer science
research topics, freshman level computer science students were
assigned the task of designing and implementing an algorithm for
encrypting ethernet packets. As a take-home final exam, the
students were required to document the design, the test cases
applied and to take a 7 question anonymous survey (the survey
was done separately from the take-home exam).

The task assigned fit well into the overall "flavor" of the
class that semester. Several assignments involved the writing of
simple encryption programs. Students were also kept informed
about the latest computer security hazards and attacks directed
towards campus computer systems. Students were also taught that
security is not absolute and that there is not one standard that
will fit all businesses and industries 1. Therefore, as long as
some general requirements were met, students were allowed to
pursue any encryption approach they desired (block ciphers,
stream ciphers and public-key methods were covered in class).

Since none of the students had yet taken a software engineering
course, the assignment indicated that the majority of the effort
should be directed towards algorithm and code development. The
algorithm and code development lent itself well for student
involvement. Reasons include:

1. The application assumptions kept the overall project
complexity low. Therefore, the task could be completed in less
than one semester.

2. Enough implementation variations existed to challenge each
student according to their own abilities.

3. Implementing the algorithm(s) developed required most of the
programming constructs covered in the class (the student's
first course in C++).

The software engineering portion of the project (the take-home
final) was intended to re-enforce three concepts.

• The importance of documenting one's code in a manor such that
another does not have to actually read through the code to
verify that it meets the design goals.

• The importance of designing/developing good test cases and
using those test cases to validate the code.

• That computer science is more than "just cutting code".

The survey was used to provide feedback as to whether or not the
students found the project interesting, was something like would
like to do again and if the project had changed their
perceptions of computer science.

Background

As corporate and private America does more and more of its
business over networks the issue of network security shifts from
an ethical debate to a financial imperative. Considering the
growing need and demand for providing vender type services over
the network and the high degree of skill and tenacity exhibited
by many hackers, the need for more robust security measures
continues to increase. The cable television market is a prime
example of this as an entire underground industry has arisen
which provides people with devices to obtain cable television
services without paying for them. One can only expect that as
more vender type services are offered over the internet, these
underground industries will target the internet as well.

The current state of network/computer security technology is to
use one or more of the following techniques.

• Use complex encryption techniques that are very difficult to
defeat directly 2.

• Embed the security protocol into networks at low levels to
reduce the number of vulnerable points that the unencrypted
data is exposed to with the outside world 2.

• Use a knowledge base of users (user locations, privileges, and
owned files) 3.

The first two items can coexist using a variety of techniques.

• Complex encryption techniques supported in software.

• Complex encryption techniques supported by an accelerator
card 4.

• Complex encryption techniques supported by an external
hardware device 5.

However, hackers have demonstrated again and again that
intrusions are always possible. Powerful search techniques have
been used using multiple distributed computers connected over
the internet to break encryption keys 6. Special purpose hardware
has been built which can break a DES 56-bit key in as little as
a few days 7. Other methods (timing attack, chosen plaintext
attacks, common modulus attack, low encryption exponent attack
and low decryption exponent attack) have also been used to break
public-key encrypted messages 8. Many less sophisticated methods,

such as running a "network sniffer" on a networked computer, are
used to collect logins and passwords.

At the university level, complex encryption techniques may not
be required or may not be cost effective for use with the
general student population. An efficient and low-cost encryption
method embedded into the network at a low level may be
sufficient to prevent intruders from obtaining logins and
passwords with "network sniffer" programs. Such a method would
also provide email, ftp and other users with some security as
well. Enough security, perhaps, to meet the needs of most
students. In an effort to achieve this goal, the students were
given the task of designing a method to encrypt the data segment
of an ethernet/802.3 frame (Figure 1) and to implement the
algorithm in C++ code.

Frame Check
Sequence (FCS)
(8 bytes)

Preamble
(14 bytes)

Start Frame
Delimiter (FCS)
(2 bytes)

Destination
Address
(12 bytes)

Source
Address
(12 bytes)

Length or
Type
(4 bytes)

Data
(92 - 3000 bytes)

Figure 1. Ethernet / 802.3 frame structure.

Additional requirements were also placed on the design /
implementation. These are:

1. Efficient - Since the encryption method is to be implemented
at a low level, every ethernet packet produced gets encrypted
and every ethernet packet received gets decrypted.

2. Eliminate or mask runs of the same characters - Runs of one
character type (i.e. blanks) can provide the intruder with
clues as to what the packet may contain.

3. The key (if required) was to be generated using the
destination address, the source address, and the frame length
or type information. Using these three frame segments, a key

schedule containing 28 unique 8-byte keys for each source-
destination and frame type/length is easily produced.

4. Ethernet frames were simulated and supplied to the students as
text files. The destination and source addresses, the frame
length and the date segment were included in each text file.
The data segment length varied from file to file. The
student's programs were required to read (from disk) simulated
ethernet frame files of any length, encrypt the data segment
and write (to disk) the resulting simulated encrypted ethernet
frame files. The files written by the student's programs were
required to have the same format as the simulated ethernet
frame file.

5. The student's programs were also required to decrypt simulated
encrypted ethernet frame files encrypted with their own
algorithm.

Student Designs

During the semester, and prior to the assignment of this task
(or research project), several encryption methods were
introduced in class. These included block ciphers, stream
ciphers, and public-key ciphers. Block ciphers transform a
fixed-length block of data into a block of encrypted text of the
same length. Stream ciphers operate on streams of data, usually
individual bits or bytes. Public-key ciphers can be implemented
as either block or stream ciphers. Student algorithms meeting
the full requirements were either stream ciphers or block
ciphers. Most of the student algorithms were stream ciphers.
Only a couple of students developed block cipher algorithms.
Since the students were aware of the computational cost of
public-key ciphers, none of the students used that approach.

All of the stream cipher algorithms developed generated the key
schedule from the 28 bytes forming the source and destination
addresses and the frame length or type. In every algorithm
encryption was accomplished by XORing the key schedule with the
data segment. Figure 2 shows the basic algorithm. A list
providing a brief synopsis of acceptable algorithms follows
Figure 2.

i = 0;
j = 0;
while (i < text_length) {
 text[i] = (key[j] XOR text[i]) + M;
 i++;
 j++;
 if (j >= N) j = 0;
}

Figure 2. Simple XOR stream cipher algorithm.

List of Algorithms

1. Use the 28 bytes as 28 separate keys (N = 28). A variation on
this idea included the addition of a constant (M) to each key-
data XOR result.

2. Combine pairs of the 28 bytes forming 14 keys (N = 14). This
is done by either adding their ascii (integer) values or by
XORing byte pairs.

3. Using a set sequence, select 8 of the 28 bytes forming 8 keys
(N = 8).

4. Combine trios of the 28 bytes forming 12 keys (bytes from the
frame length or type are used multiple times) (N = 12).

5. Combine the destination address bytes, source address bytes
and frame length bytes into 3 keys. Add 31, 32, or 33 (M 1 =
31, M 2 = 32, M 3 = 33) to each key-data XOR result.

6. XOR the first byte of the destination address with the last
byte of the source address forming a single key. Add a value
(M = data-byte-position mod 10) to each key-data XOR result.

7. Use the hexadecimal value of byte 12 of the source address to
determine key 1. Use the hexadecimal value of byte 12 of the
destination address to determine key 2. Alternate the use of
the 2 keys and add 2 to every second key-data XOR result and 5
to every fifth key-data XOR result.

8. Generate a key from the source or destination address by
adding the 12 bytes. XOR the key with the first data byte. Use
the key-data XOR result as the next key. Continue until all
data bytes have been processed.

9. Generate a key by adding the 28 bytes. Swap the N th and (N th +
2) bytes of the key-data XOR results to mask runs of identical
characters.

The single block cipher algorithm also involved the generation
of a key schedule from the 28 bytes forming the source and
destination addresses and the frame length. Like the stream
cipher algorithms, encryption was accomplished by XORing the key
schedule with the data segment. However, this algorithm also
made use of byte swapping to mask runs of identical characters
(a block cipher). Figure 3 shows the basic algorithm. Following
Figure 3 is a brief synopsis of the one acceptable algorithm.

i = 0;
j = 0;
while (i < text_length) {
 text[i] = (key[j] XOR text[i]);
 i++;
 j++;
 if (j >= N) j = 0;
}
i = 0;
k = text_length;
while (i < text_length / 2) {
 swap (text[i], text[k]);
 i+=2;
 k-=2;
}

Figure 3. Simple XOR block cipher algorithm.

List of Algorithms

1. Form 2 keys by combining the source and destination addresses
into 2 integer values. Add the absolute difference of these
keys to each data byte. Mask runs of identical characters by
swapping the N th and (last-N th) characters. Where N = 0, 2, 5,
...

Survey Results

As part of the take-home final exam, the students (49 total)
were required to take a 7 question anonymous survey. Each
question had 5 possible answers. Answers ranged from 1
(indicating a "no" or "not very") to 5 (indicating a "yes" or
"very"). Students were instructed to select the most appropriate
answer for each question. Most of the questions were designed to
solicit an opinion on a specific question/idea. However,

question 2 was vague on purpose and was intended to determine if
the students felt that they had learned anything at all. The
questions and summary of answers are shown in Table 1.

Table 1. Survey results.

Question Max Min Ave Std

Did you enjoy this research? 5.00 2.00 4.12 0.83

Did you learn anything new by doing
this research?

5.00 2.00 4.31 0.77

How difficult was the research? 5.00 1.00 3.61 1.00

Would you like to do another research
project like this again (in another
class)?

5.00 2.00 4.00 0.91

How successful / appropriate do you
feel your design was?

5.00 1.00 3.82 1.07

The assignment was designed to give
you a feel for the type of work you
may do as a computer scientist. Did
the assignment change your perception
of computer science in any way?

5.00 1.00 2.98 1.22

Would your recommend that a similar
research project be undertaken again
in another CS-173 class?

5.00 2.00 4.27 0.84

Results of the survey suggest that the students enjoyed the
assignment, felt it was a worthwhile exercise and recommended
that a similar exercise be undertaken in future classes. The
results from question 2 suggest that many students felt they had
learned something. Including the possibility that they did not
like computer science! Which was the case for at least one of
the students. From question 6, it appears that a significant
number of students did not have a clear idea of what being a
computer scientist entails 1. Finally, discussions with individual
students also indicated that those who had taken programming
classes in high school generally found the task easier, more
interesting and had worked towards developing more elegant
solutions.

1 The author's experience with freshman computer science students tends to
agree with this result.

Conclusion

Freshman level computer science students were assigned the task
of designing and implementing an algorithm for encrypting
ethernet packets. Students were allowed to pursue any encryption
method they desired including variations of three encryption
methods covered in class (block, stream and public-key ciphers).
Several assumptions were made to make the task tractable for
freshmen level students. However, specific requirements were
also made which forced the students into using some of the more
complex C++ programming constructs (such as pointers and dynamic
arrays). The requirements also forced the students to develop a
realistic encryption algorithm.

As a take-home final, students were required to document their
design, test cases used and the results of applying the test
cases. Students were also required to complete a 7 question
anonymous survey. Survey results suggest that the students
enjoyed the project and that they would like to do something
similar in other classes. Survey results also suggest that, at
least prior to the project/class, many students were not sure of
what computer science entails.

It is the author's opinion that approximately 25% of the
students developed very good solutions. Approximately 65% of the
students developed mediocre solutions. Approximately 10% of the
students developed unacceptable solutions (in some cases they
essentially copied code given out by the instructor). 100% of
the programs compiled and ran. These percentages agree with the
author's previous experience with programming projects assigned
to other freshman level computer science students. However, in
all cases, the documentation was little more than a narrative of
the program's menu options. To some extent, this was expected as
none of the students had yet taken any courses in software
engineering.

Acknowledgements

I would like to acknowledge the students whose work was reviewed
in this document. They are: Neil Fasteen, Eric Mislivec, Kyle
Stern, Tom Simmer, Rong Qu, Patrick Inman, Daniel Lucent, Chad
Larson, Anne Erickson, Wade Baird, David Voecks, Chris Peterson,
Andy Tidball, Brian Asker and Troy Dahnert.

References

1. Coopers & Lybrand L.L.P., "Microsoft Windows NT Server:
Security Features and Future Direction," Information
Technology Security Services, 1997.

2. Goldberg, L., "New Encryption Strategy Uses Hardware and
Software to Protect Data on Public Networks," Electronic
Design, March 6, 1995.

3. March Information Systems - Security Manager Windows NT
Security Knowledge Base.

4. Rainbow Technologies - CryptoSwift.

5. Paralon - PathKey Fortress, Rainbow Technologies -
CryptoSwiftEN and SignalGuard - SecurNET HSP.

6. http://www.distributed.net/.

7. Schneier, B., "The Twofish Encryption Algorithm: The Current
State of the DES,", Dr. Dobbs Journal, December, 1998.

8. Hamzah, K., "http://www.ee.mtu.edu/courses/ee465/
groupa/problems.html".

