Extracting Datafrom aMOO

Curt Hill
Valley City State University
Curt_Hill@mail.vcsu.nodak.edu

Abstract

The usefulness of MOQOs (Object Oriented MUDs, which are Multi User Domains) as an
educational resource has been demonstrated in avariety of ways. For example, the
ProgrammingLand Museum implements an Exploratorium-style museum metaphor to
create a hyper-course in computer programming principles aimed at structuring the
curriculum as atour through avirtual museum. Student visitors are invited to participate in
a self-paced exploration of the exhibit space, where they are introduced to the concepts of
computer programming, are given demonstrations of these conceptsin action, and are
encouraged to manipulate the interactive exhibits as away of experiencing the principles
being taught. Although aMOQ is a particular form of object oriented database that is easy
to navigate for the student it is often difficult to obtain many kinds of global information
fromaMOQO. Most MOO implementations have a variety of commands written in the script
language, which answer some of the status and operational questions, but never all of
them. Each such question requires a separate script program to answer. For example,
finding al the exits labeled with the word ‘ next’ without the alias‘n’ is one such global
guestion. Finding all the references to absolute object numbersin verbs or propertiesis
another.

A system has been created where aM OO is systematically queried for information by a
client program. Thisinformation is transformed into SQL statements and inserted into a
relational database. The relationa database can be queried much more easily than the
corresponding MOO, for many important pieces of information. This system has three
functiona pieces. 1) A Java program communicates with the MOOQ in client mode using the
telnet protocol. This program queries the MOO for status values and generates SQL
statements. 2) A Microsoft SQL Server (or other SQL-capable database) processes these
statements into a usable database. 3) A set of existing queries (with the inclusion of any
new queries) is submitted to the SQL database which describe the workings of the MOO
and the actions of students.

This paper discusses some of the problemsinvolved in administering aMOO and the
kinds of information that are tedious to extract. It then considers the devel oped system that
eases this burden and gives several sets of example SQL statements that answer the
guestions posed earlier. Results from executions involving the ProgrammingLand MOO are
given as examples.

The results of thiswork should be usable in any other environment using MOOs and the
supporting programs are available for distribution.

Introduction: The Organization of aMOO

The use of MOOs for educational purposesison the increase. They offer many
advantages over web based instruction. [Hill and Slator, 1997] The World Wide Web
Instructional Committee [WWWIC, 1998] isin the process of using and developing MOOs
for the purpose of exposing studentsto highly interactive, virtual environments for
educationa purposes. A MOO is an immersive environment where activities and
experiences will occur in away difficult without costly laboratories and personnel.



The development of MOOs started with Multiple User Dungeons, an interactive multi-
user dungeon and dragon style game. These evolved to also provide virtual social
environments. [Keegan, 1997] A MOO isjust an Object Oriented MUD. Pavel Curtis wrote
the standard MOO software for aUNIX platform. [Curtis, 1997] Since that time it has been
ported to several other platforms, such as Macintosh and Windows NT. [Unkel, 1997] The
MOO consists of two pieces, the server software, which iswritten in C and atext database.
At startup, the database is completely read into memory and then the server dealswith
clients using the telnet protocol. A basic databaseis called a core since it contains only the
fundamental objects. There are several MOO cores available. The Lambda MOO coreisthe
first and most common and isin usein the Geology Explorer MOO [Slator, Schwert,
Saini-Eidukat, 1998] at NDSU. The encore High Wired core is specifically for educational
MOOs [Haynes and Holmevik, 1997] and is the basis of ProgrammingLand on the VCSU
campus.

The coreitsalf ismerely the starting point for any MOO. One of the strongest features of
aMOO isthat it is customized by a scripting language reminiscent of C. New objects can
be created and endowed with whatever properties and methods (amethod is called averb in
MOO terminology) are desired. Almost any aspect of the MOO is subject to modification by
the proper manipulation of the properties and verbs of the MOO objects. A typical MOO
core contains approximately one hundred objects, while aworking MOO typically has
several thousand objects.

The objects of aMOO have afew basic characteristics. Each object has an object
number, which is prefixed by a# in most uses. This object number is unique for each
object. All objects also have a name, a parent object, alocation, an owner and several flags.
The nameis used to describe the object to any onlooker. The parent object is the super
class. Every property and verb contained by the parent (and its parents) is also contained in
this object. The object may have other properties and verbs added to it aswell. The location
is an object that contains this object. It is often aroom, but may also be aplayer. The
owner of an object is aplayer who owns the object. The creator of the object is usually the
owner. Players own themselves.

Objects can be categorized into four distinct classes, al derived from the basic MUD
metaphor. Some objects are players (further subdivided into three classes), some are
rooms, some are exitsand all the rest are called things. A player uses the exits to navigate
through the rooms and usually finds things scattered around the rooms. Most of these are
objects that are descended from ancestral objects of that type. For example, object #7 isthe
Generic Exit and all exits have #7 as an immediate or distant ancestor. The others are:
object #3 is the Generic Room, object #4 is the Generic Builder, object #5 is the Generic
Thing and object #6 isthe Generic Player.

A MOO is populated by three classes of players. The highest classisthat of the wizard.
The wizard has absolute power to create or destroy anything, consequently most MOOs
have very few players trusted enough to be given wizard characters. Wizards typically own
only core objects. Programmers have the ability to create new objects and to destroy
anything that belongs to them. The bulk of aMOQ is built by one or more programmers
who must cooperate with one another in this process. Thus, a programmer or builder
cannot add an exit to another programmer’ s room. They create the exit and then the other
programmer must add it as an exit to their own room. (A wizard is not restricted by
ownership inthisway.) The last and lowest classisthe player. Players explore the MOO,
but cannot create rooms, exits or things.

A player usesaMOO by connecting to the MOO. This may be done with any program
that supports the telnet protocol, though usually one of many MOO or MUD client
programs are used. In the connection process, the player identifies their player name and
password. Then they move through the MOO in a characteristic way. When they first enter



aroom, the description property is displayed. Any objects or players are mentioned as
being present. Finally, visible exits are shown. The name of the exit is a so the command to
take that exit to the next room. While in the room the player may chat with any other player
present in the room, since every room in aMOQO is achat room. If there are any other
objects in the room, the player may interact with them in any way defined by the object.
The player may pick up the object, should it not disallow such an action. However, in an
educational MOO the other player and object interactions are usually more interesting.

The MOO and Education

The ProgrammingLand MOO and the Geology Explorer MOO are two examples of
interesting but quite different educational approachesin the use of MOOs. The
ProgrammingLand implements a Virtual Lecture with the chief emphasis on instructional
content. The Geology Explorer implements the Virtual Laboratory and its emphasis on goal
directed experiments.

The ProgramminglLand MOO uses the metaphor of an Exploratorium. The student
moves through a museum of programming, reading the exhibits in whichever direction the
student chooses. There are several wings in the museum, each of which deal with a
different programming language. Each room has one or two of paragraphs of text on a
particular topic and directions to other rooms with related topics. A series of web pages
could do this, but aMOO offersinteractions not usually found in web pages. Code
machines are one of the objects that populate the MOO. A programming student can
observe a piece of code, have it explained on aline by line basis or trace through the
execution of the code. Thisisthe Virtua Lecture.

The Geology Explorer MOO uses a quite different metaphor. A student is given agoal of
finding aparticular mineral on avirtua planet. Each room in this MOO has the description
of aparticular terrain. Exits are the paths to other parts of the planet. Many rooms have
severa objects present which are various minerals and their descriptions show how they
would look in anatural setting. The goal of recognizing the mineral not only requires
knowing what it lookslikein its native state, but also of testing that hypothesisin amore
precise way. The student has the opportunity to start the exploration by purchasing the
tools needed to test their minerals. Since the MOO knows the goal of the student’s
exploration, when they make afalse step atutor, which is an object in the MOO, can give
them hints. These hints can include looking for a particular mineral without the needed
tools or leaving the room where the mineral is present. This MOO gives the student an
opportunity to have an experience that could be expensive or dangerous in the real world.

Administeringa M OO

The administration of aMOQ is not particularly difficult, but finding out certain details
about the database can be. Administrators, who are usually the archwizard, are often forced
to write specia purpose MOO verbsto find out ssimple things. Many such verbs have made
it into various cores, but this seems to be a bandage on a more serious problem. Consider
the following problem: Most objects have one or more aliases to make their use easier. Ina
gpatially oriented MOO the direction north will name an exit that proceeds in anortherly
direction. Typing “north” every time turns out to be tedious, so the alias“n” isusually
supplied. However, that alias must be applied to every exit, which cannot be donein any
global fashion. The problemisfinding al the exits that have “north” as aname or aias but
do not have “n” asan alias or name. This requires the writing of a specia verb that scans all
exits and looks for this. It is not alarge amount of work, but for all the similar questions, it
isanew program or modification of an existing one. Thetypical strategy isto collect the
complaints of players who explored the MOO and add the alias when someone complains.



This situation should remind the reader of the reasons for building database management
systemsin thefirst place. The answers to the important questions are in the data, but to find
these answers requires myriad specially written programs, with incumbent costs. The
reasonabl e sol ution then would be the construction of a database that contains the data of
the MOO, but in amore accessible form. Thisis the germ of the idea on which this project
is based. Callect the data from the MOO into a database that is easy to question for
administrative purposes. A relational database seemed the obvious answer.

A Program to Extract Data from the MOO

Thefirst problem is how to create the data for the database. There are two obvious
approaches: scan the text version of the database without using the MOO server or use the
server itsef to scan the database. Although the MOO database is stored on disk in atextual
form the parsing of that form is very difficult, every linein the disk fileis either an integer
or line of text. Some study of the problem showed that the first line displayed the version
of the database format and the second the first unused object number. However, to
determine the significance of each line of the database without documentation other than the
server code was very daunting. Determining the characteristics of any object for aMOO
wizard is quite straightforward: use the @show command. Therefore, an easier approach
than interrogating the text database was the creation of a program that appeared to the MOO
asjust another client. Such a program would connect with wizard privileges and then
systematically examine each object. It would then produce statements suitable as input to
the database, mainly SQL Insert statements.

A word of explanation about the name may bein order. This program creates a Data
Warehouse, that is adatabase that is a snapshot of an operational database. The process of
Data Mining is processing a Data Warehous to find relationships that are not obvious.
However, MOOs often refer to themselves as caves, dating back to the dungeon and
dragons origins. The command to build a new room or an exit from one room to another is
the @dig command. The MOOMiner program enters the cave, mines the raw data out and
placeit in relationa database so that it can be refined into something usable. Thisis data
mining indeed, but not to be confused with the more conventional use of thetermin
database field.

Javawas chosen as the language to implement this program for two very good reasons.
Java s platform independence is greater than any other language at thistime, especiadly in
reference to how it handles1/0. Thisis particularly important since such a program will do
large amounts of 1/0. Other MOO administrators could find the results useful, so a platform
independent program would be more valuable than one confined to asingle platform. The
second reason is strongly related to the first. Such a program will need to implement the
telnet protocol using a TCP/IP connection. Such atask is usualy painful, but in Java, itis
barely distinguishable from ordinary disk 1/0.

Theinternal program details are not germane here, but afew details should be noted.
The program consisted of 5 classes totaling less than 1500 lines of Java. The program
starts with amenu that has four options: connect to the MOO; exit the program; set the host
characteristics; and a description of the program. The bulk of the program isan exercisein
parsing the input that is returned by the various commands to display the objects. When the
program runs to investigate ProgrammingLand it runs for about two hours and produces a
file of SQL statements of size approximately 14 MB. The SQL server takes an additional
four hoursto processthisfile. All of these program times were running on a Pentium 233
with 64MB of RAM.

What isimportant hereis a consideration of the basic database that the program
provides. The entire output fileis acollection of SQL statements. Thefirst lines create the
database and then the rest add records to the created schema. Every MOO scanned would



have some basic items examined. However, thereisthe ability to look for items that may be
specific to one particular MOO.

The central table of the database was the obj ect s table which recorded the universal data
about an object. The object_number is referenced by every other table in the database. All
six-character fieldsin all the tables are object numbers. This object number isapound sign
(#) followed by aoneto four digit number.

ob]_name | object number | parent | location | owner | Is player | is programmer | IS wizard
varchar char(6) char(6) | char(6) | char(6) | bit bit bit

IS readable | Is writable | Is room | Is exit

bit bit bit bit

Thever bdefs table describes the verbs that are defined on any particular object. Recall
that if an object defines averb, all of its descendents may use it, however only the original
contains the definition. When the server parses acommand line, it categorizes the words
into direct object, preposition and indirect object. These last three properties describe how

the verb may use them should they occur in acommand line.

object_number

verb_name

dir_ob

prep

indirobj

char(6)

varchar

char(10)

char(10)

char(10)

Thever bs table captures all of the verb code, which are the objects methods. Each
record represents one line of the verb program.

object number

verb _name

[iIne_number

the line

char(6)

varchar(50)

Integer

varchar(350)

Thever brefs table looks for absolute object numbersin the verb code. Such references
are generally undesirable. Their presence complicates the updating of the core.

object_number

verb_name

refed _object

[ine_number

char(6)

varchar(50)

char(6)

integer

The propdefs describe what properties are defined on one object. Like the verbs, an
object may define a property and all of its descendents will also have the property, but not
define the property.

object_ number

prop_name

char(6)

varchar(50)

Theproperty table collects the values stored in any objects properties. The value will
be present if the object defines the property or inherits the definition from any ancestor.

object_number

prop_name

prop_value

char(6)

varchar(50)

Seq
integer 1dentity

varchar(150)

Thepropr efs table parallelsthe verbrefs table. It is often the case that the value of a
property is an object number, especialy in object #0. This table captures any property that
has as its value an object number.

object_ number

prop_name

refed object

Seq

char(6)

varchar(50)

char(6)

Integer identity

Thealiases table captures a particular property that most objects have, that is aternative
names for the object. One problem is that two objects may have the same name making
referencing them difficult.

object_number

sequence

name

char(6)

Integer 1dentity

varchar(50)




Thedupver bs table was developed near the end of the project. A MOO alows one
object to have multiple verbs of the same name. Like C++ it distinguishes the verbs by
parameter type. This table captures these duplicate verbs.

object number | verb name | seq

char(b) varchar(50) | integer identity

The abovetables are very general and could be used on any kind of MOO, but it isvery
important to be able to customize the program to the particular MOO. This program readsin
afilethat allowsit to scan properties and create extratables. Properties may have two kinds
of values. scalars and lists. The property table can contain list values, but it will be difficult
for aquery to examine these. Therefore, afileisread at startup time that allows the creation
of extratables. Each tableis specified by three items: the name of the table, the name of the
property and the SQL variable description. Each such table has two supplied columns, one
for the object number and another to guarantee uniqueness. Two such tables are next
described that are useful for the ProgrammingLand MOO.

Theowns table collects al the objects owned by a player. Only playerswho are
programmers or wizards can actually own items. In ProgrammingLand the PGMR owns
amost everything except the core, however, most of the LISP wing is owned by individual
students. The owns property isjust alist of object numbers. Thistableis general enough
that almost every MOO could use it.

object number | seq Item

char(6) integer identity | char(6)

Thehistory tableisunique to ProgrammingLand. Every student character possesses a
property that lists every room the student has visited. The purpose of thiswasto be a
diagnostic tool for the teacher and it is also used in certain active exits. An active exit
allowed a student to passif they had viewed the prerequisite material and warned them not
to enter otherwise.

object number | seq item

char(b) Integer 1dentity char(b)

Thereis one additiona way to customize the database. When al the objects have been
examined, the program allows some additional SQL statements to be appended. The
original motivation wasto alow Views to be added after all the insertions were complete.
Views substantially simplify the access to rooms and exits. Rooms and exits are objects
like any other in aMOQO, but they are very common and very important. Thereforeitis
convenient to add a view that shows all objects that are rooms and another those objects
that are exits. This capability is handled merely by having afile of SQL statementsthat is
appended to the regular file of statements. These may define views, indices or any other
useful statement.

This project is not yet finished, in that other tables may be constructed as new questions
arise or other features added. What questions have already been asked and answered by
appropriate queries?

The SQL Queries

ProgrammingL and implements a museum of instruction on programming or avirtua
lecture. An interesting question to ask is: how many exits occur from each room? The
motivation for this question is the desire to avoid long hallways, where students
meandering through the museum have few choices as to their next topics. Finding the
average number of exits per room is quite easy, divide the number of rooms by the number
of exits. The more difficult problem is finding the number of rooms with one exit or rooms
with only two exits. A one-exit room is adead end, usually the student must go back to
room that was previoudly visited. A two-exit room is a hallway, the student can go forward



or backward, but still haslittle choice. At the other extreme are rooms with many exits that
may provide too many choices. The following query sorts the rooms by the number of
exits:

select room.object_number, count(path.object_number)
from objects as room, objects as path, property asp
where room.is room =1 AND
path.is exit =1 AND
path.object_number = p.object_number AND
p.prop_name = 'source’ AND
p.prop_value = room.object_number
group by room.object_number
order by count(path.object_number)

The solution to this query led to another related problem. ProgrammingLand has two
distinct types of rooms. The normal room has some instructional text and then a number of
exits are shown by the MOO. However, there are al so signpost rooms which typically are
the beginning of alesson or group of lessons. The latter are usually menus of possible
destinations. An example signpost room description follows:

Flow of Control Statements

Flow of control statements allow programs to execute statements in some fashion other than one right
after another. Programs with only sequential flow are unable to respond to unusual situations, do
anything more than once or many other interesting things.

There are several kinds of statements that alter the normal flow of control, each of which have their own
exhibits. Consider one of the following:

a) Decision statement. Choose one of several alternatives. The most common isthe if statement.

b) Looping statements. There are three statements that provide repetitive execution, with several
variations.

¢) Function calls or method invocation

or

X) Return to the C++ foyer

Y ou see smallif here.

Obvious exits: [exit] to C++ foyer, [decision] to Decision Statements, [loop] to Looping Statements,
[function] to Functions

When a player enters aroom, the MOO server shows the room name first and then the
description, the contents and then possible exits. The name of the room isthefirst line. The
next dozen lines comprize the description. This particular room has something in it, acode
machine named smallif. If there were other students present they would aso be shown.
Thefina two lines are the visible exits. The name of the exit isin brackets and the name of
the room that it leadsto follows. Therefore a student can type loop and move to the
beginning of the lesson on loopsin C++. Any object may have a number of different
aliases, the loop exit hasan aliasof b. Although it is not obvious from what is shown, the
exit also has aliases of loops and looping. Thus the student may type any of these four and
enter the looping room.

In most rooms those final severa lines are the main indication as to where the student
can go next. However, in asignpost room it is redundant and tends to make the display
longer than needed. The MOO server will suppress the display of obvious exits if the room
has a property called tell_exits set to zero. Therefore the following query was created to
find al those rooms that had exits with an aliases of a, b, c and tell_exits of 1.



select r.obj_name, r.object_number, el.obj _name, e2.0bj _name, €3.0bj_name,
p.prop_value

from roomsr, exits el, aliases as al, exits €2, aliases as a2, exits €3, aliases as a3,
property as p

where el.source = r.object_number And
al.name="a And el.object_ number = al.object_ number And
e2.source = r.object_number And
a2.name="b' And e2.object_number = a2.object number And
e3.source = r.object_number And
a3.name="c' And e3.object_number = a3.object_number And
p.prop_name="tell_exits' And p.object_number=r.object_number And
p.prop_value=1

This particular query is usually only done once, since the roomsthat it finds are usually
changed to enhance the exploration of the MOO. The LambdaM OO script that would find
all such rooms would be substantially more lines of code and work.

The students in this MOO have a property that contains all the room numbers that they
have visited. The MOO program that displayed that was relatively smple but substantially
more complicated than the following SQL query:

select distinct st.obj _name, rooms.obj _name

from objects as st, history, objects as rooms

where st.object_number = history.object_ number AND
history.item = rooms.object_number AND
history.item <> '#0'

order by st.obj _name
In the above what is shown is the player’ s name and the room’s name. The list of items that
have been visited usually starts with a zero, hence the exclusion of object zero.

The following query looks for objects that are not players, rooms, or exits that happen to
be located in aroom that has a different owner than the item itself. The situation that
prompted this was students picking up instructional objects and moving them to other
locations. This also finds objects that are owned by someone other than the player carrying
him or her at the time.

select 01.0bj_name, ol.owner, 02.0bj _name, 02.owner
from objects as 01, objects as 02
where ol.location=02.0bject_ number AND

ol.owner<>02.owner AND
not(ol.owner in (‘#2','#3','#12','#13', '#121")) AND
ol.is player <>1

The problem mentioned earlier in the paper, an exit labeled “next” that did not have an
dliasof “n” is shown next. The only modification needed for most MOOs isto change the
‘next’ in thethird lineto ‘north’:

select distinct 0.0bject_number, obj_name, p.prop_vaue



from objects as o, aliases as a, property asp
whereo.is_exit = 1 AND o0.0bj_name = 'next' AND
a.object_number = 0.0bject_number AND
p.object_number = a.object_number AND p.prop_name="source’ AND
not a.object_number in (select object_number
from aliases
where name="n'

The last query to be considered, providesalist of al the playersthat own property. In
ProgrammingL and four objects own the bulk of the MOO, the author’ s wizard character
(#2); the authors builder (#121); hacker(#57) who isacoreitem and not areal player; and
the author’s most common co-author (#135). These four are the normal owners, all the
others are found with this query:

select owns.object_number, ow.obj _name, item, ob.obj _name

from owns, objects as ob, objects as ow

where owns.object_number !="#2" AND
owns.object_number !'="#121' AND
owns.object_number !'="#57' AND
owns.object_number !'="#135' AND
owns.object_number = ow.object_number AND
owns.object_number !'=item AND
owns.item = ob.object_number

The above list of queries cannot be the exhaustive list. As the questions emerge new
queries will be constructed. Appendix 1 aso gives some queries that determine that the
SQL statements produced by the program were inconsi stent.

Future Work

There is much to do make this project most usable. The following list considers some
improvements that will be considered.

1. The parsing of the output of the MOO is not based upon any specia objects or
characteristics of the MOO. Thus the examining program is subject to interruption. If a
player enters the room the program is occupying the entrance message will be mixed with
the output of the MOO, giving incorrect results. Furthermore, the parsing of the output is
based upon about twenty messages that the MOO gives. Some of these messages are
characteristic of the server, but most are characteristic of the MOO core. At the present they
are al congtant strings, but should be rendered in an external file to ease the customization
to other cores. However, the relational database is the best tool to find where the properties
that store the messages.

2. Many other standard queries need to be developed to gain more insight into the
behavior of the studentsin the MOO. This may entail keeping more information in the
student character aswell as the generation of new SQL statement.

3. ProgrammingL and implements the virtual lecture. The normal useisfor studentsto
browse the exhibits in their own order astheir curiosity demands. Thisisthe desired mode
for theinitial visit to aroom, but what about the use of the MOO as areference tool. When



the student has read something once and now wants to return quickly to check a detail, the
MOQ isill equipped to supply a quick path to the item. One good solution to that is to add
an extra property to the room, which isalist of keywords or phrases that the room
considers. Therelational database then becomes the tool to start the construction of an
index or table of contents. Browsing the index sends the student immediately to the exhibit
of interest. Such a property has not been implemented since there was no mechanism to
explait it in the MOO.

4. The MOOMiner program currently creates arather large file of SQL statements that
are later processed by the RDBMS. The experience with Microsoft's SQL Server isthat
finding errorsin the SQL statementsis anon-trivial problem. Even finding which statement
wasin error is not trivial. Furthermore, the extraction process is time consuming and build
of the database istime consuming. A better approach isto have the program send the
statements to the RDBM S online rather than through afile. The error tracking would be
much better, since the Java program would know the statement that caused the error. The
performance should also be better with the MOO server, SQL server and MOOMiner
operating concurrently, usually on separate machines. This task was not handled to keep
the project to amanageable size.

Project Evaluation

This project has been beneficia in a number of ways. The author has gained
considerable understanding in many unrelated areas. These include the syntax and
semantics of SQL, the vagaries of Microsoft's SQL Server, certain features of the Java
language and even features of the MOO. For examplethe tell_exit property is not
mentioned in the commonly used documentation of LambdaMOO. It was discovered by the
author while looking for something elsein query results. The potentia of this project to
make the MOO easier to use and administrate has only partialy been illuminated. It isthe
author's desire that the project will be useful elsewhere aswell.

Conclusion

This paper has discussed some of the problems of administeringaMOO. These
problems motivated the creation of a system to extract object information from the MOO via
aJava application named MOOMiner. This program systematically examines each object in
the MOO and converts the derived information into SQL statements. These statements are
processed by a RDBMS, in this case Microsoft's SQL Server into a database that captures
all the information on the MOO. This database is used to answer the questions posed by the
MOO administrator. A number of predefined queries were discussed, but any other query
can be made using normal SQL.

References

Curtis, Pavel (1997). The LambdaM OO Programmer's Manual. ftp://ftp.lambda.moo.mud.org
/pub/M OO/ProgammersManual .html

Haynes, Cynthia, and Jan Rune Holmevik, eds (1997), High Wired: On the Design, Use and Theory of
Educational MOOs. University of Michigan.

Hill, C. and Slator, B.M. (1998). Virtual lecture, virtual laboratory, or virtual lesson. Proceedings of the
Small College Computing Symposium (SCCS98). Fargo-Moorhead, April. pp. 159-173

Keegan, Martin. (1997) A Classification of MUDs. Journal of MUD Research, volume 2, number 2 (July
1997). http://journal .tinymush.org/~jornr/v2n2/keegan.html

Slator, B.M., Schwert, D.P., Saini-Eidukat, B., and others. (1998). Planet Oit: avirtual environment and
educational role-playing game to teach the geosciences. Proceedings of the Small College Computing
Symposium, Fargo-Moorhead, April, pp. 378-392.



Unkel, Christopher (1997). WinM OO. http://www-personal .engin.umich.edu/~cunkel

WWWIC: Juell, P., McClean, P., Schwert, D., Saini-Eidukat, B., Slator, B., White, A.
http://www.ndsu.nodak.edu/wwwic

Appendix A
The following queries eval uate the consistency of the extracted data:
select obj_name, is_player, is_room, is_exit
from objects

where (is_player = 1 and (is_room =1 or is_exit=1)) OR (is_room =1 and
IS _exit=1)

select kid.obj_name, kid.object_number, kid.is_room, kid.is_exit, kid.is_player,
par.obj_name, par.object_number, par.is_room, par.is_exit, par.is_player

from objects as kid, objects as par

where kid.parent = par.object_number AND (kid.is_player != par.is_player OR
kid.is_room != par.is room OR kid.is_exit = par.is_exit)

Thefirst Select determines that no object is two of the following: room, player or exit.
The player determination is just the presence or absence of aflag on the object. However,
the MOO determines that an item is aroom because it is descended from aroom. Thisis
difficult for the program since the descendent objects are not always in numerical order;

e.g. object #50 may be a descendent of #287. Therefore the program looks as properties. If
an object has properties characteristic of aroom then the program concludesthat it isa
room. Thefirst Select verifiesthat this conclusion was valid. All runs so far have been
consistent.

The second Select attempts to verify the same thing in adifferent way. It compares all
pairs where one item is the parent of the other and validates that both of the pairs are the
same kind of thing. That isit should find any room that has an exit for a parent. This
typicaly showsthose items that are the beginning of the room or exit hierarchy. Thusthe
first runs have been consistent. The further queries are more interesting since they ask the
questions that are hard to ask the MOO directly.

A third consistency issue is whether the various object numbers that are cited actually
exist. Some such questions are caught by the database’ s referential integrity checking.
However, checking that each parent object is an actual object cannot be done because
parents may have larger or smaller object numbers than their descendents.



