
Teaching Problem-Solving Techniques Utilizing a
Running-Example Problem

Mark Fienup
Computer Science Dept.

University of Northern Iowa
Cedar Falls, IA 50614-0507

(fienup@cs.uni.edu)

Introduction

The problem-solving techniques such as greedy algorithms, divide-and-conquer, dynamic
programming, backtracking, and branch-and-bound are important computer science concepts that
typically are taught in an Algorithms course. When each of these problem-solving techniques is
introduced to students, illustrative example problems are used to demonstrate the technique and
make the abstract problem-solving technique more concrete. Unfortunately, textbooks [1][2][3]
(and teachers) use different example problems when initially introducing each problem-solving
technique. This paper points out the benefits of utilizing the same example problem when
introducing each of the problem-solving techniques. We will call this a “running-example
problem.” Additionally, this paper points out specific running-example problems that are useful
when introducing all of the problem-solving techniques.

A good running-example problem is the coin-changing problem where the goal is to make change
with the fewest number of coins assuming that an unlimited supply of each type of coins is
available. The main criteria for selecting a good running-example problem used to introduce all of
the problem-solving technique are that 1) the problem should be amenable to all problem-solving
techniques taught, and 2) the problem should be easily understood by students, i.e., the problem
should be as concrete as possible. Thus, students are better able to focus on the problem-solving
technique and not the details of the problem being solved.

Running-Example 1: Coin-changing Problem

In the coin-changing problem, the goal is to make change with the fewest number of coins
assuming that an unlimited supply of each type of coin is available. When asked to solve this
problem, students quickly come up with the obvious greedy algorithm of giving back the largest
coin first that is less or equal to the change remaining to be returned. Figure 1 shows the choices
this greedy algorithm would making for 41 cents change with coin types of 1, 5, 10, 25, and 50
cents.

Students are surprised to learn that this greedy algorithm does not give the optimal solution for a
different set of coin types. For example, making change for 41 cents with coin types of 1, 5, 10,
12, 25, and 50 cents results in six coins being returns as shown in Figure 2. Clearly, a better four
coin solution exist, i.e., return 25, 10, 5, and 1-cent coins.

To solve the Coin-changing problem optimally, we can employ the problem-solving techniques of
divide-and-conquer or dynamic programming. However, in order to use these techniques we
must first establish a recursive relationship that allows us to solve the initial problem (e.g., making
change for 41 cents) in terms of smaller instances of the same problem. After teaching algorithms
for several semester, this is probably the hardest skill for most students to learn when applying any
of the problem solving techniques. To help the students see a recursive relationship for making
change, I suggest thinking about the choice of the first coin to be given back. If we tried each
type of coin, we would be left with a smaller remaining amount of change to return as shown in
Figure 3. If we knew the fewest number of coins needed for each of smaller remaining amounts
of change, we could decide the best choice for the first coin to give back.

Thus, our recursive relationship FewestCoins for the coin-changing problem would be

FewestCoins(change) =
1 if change CoinSet

minimum(FewestCoins(change - coin)) + 1 if coin CoinSet
coin CoinSet

 41
- 25
 16
- 10
 6
 - 5
 1
 - 1
 0

Return the largest coin less than or equal to 41 cents, i.e., 25-cent coin

Return the largest coin less than or equal to 16 cents, i.e., 10-cent coin

Return the largest coin less than or equal to 6 cents, i.e., 5-cent coin

Return the largest coin less than or equal to 1 cents, i.e., 1-cent coin

Figure 1. Greedy algorithm example for 41-cents and coin types of 1, 5, 10, 25, and 50.

 41
- 25
 16
- 12
 4
 - 1
 3
 - 1
 2

Return the largest coin less than or equal to 41 cents, i.e., 25-cent coin

Return the largest coin less than or equal to 16 cents, i.e., 12-cent coin

Return the largest coin less than or equal to 4 cents, i.e., 1-cent coin

Return the largest coin less than or equal to 3 cents, i.e., 1-cent coin

Return the largest coin less than or equal to 2 cents, i.e., 1-cent coin

Return the largest coin less than or equal to 1 cents, i.e., 1-cent coin

 - 1
 1
 - 1
 0

Figure 2. Greedy algorithm example for 41-cents and coin types of 1, 5, 10, 12, 25, and 50.

While the recursive divide-and-conquer algorithm is relatively straight forward to implement, it
performs many redundant calculations which make it impractical. For example, the partial
recursion tree for 41 cents with the set of coins {1, 5, 10, 12, 25, 50} leads to the 16-cent
subproblem many times as shown in Figure 4. Each time the 16-cent subproblem is encountered
it performs the same calculation from scratch.

41 cents

31 cents16 cents

21 cents 26 cents26 cents

16 cents 21 cents16 cents16 cents

36 cents

25 10

10 5

5 10

5

16 cents

...

...
1

10

10 5

5

Figure 4. Some of the occurrences of the 16-cent subproblem during the initial 41-cent problem.

The redundant calculations of the divide-and-conquer algorithm makes it an algorithm, i.e.,
�
(n!)

you don’t want to wait for a solution when the change is bigger than about 75 cents. The
redundant calculations of divide-and-conquer provides good motivation for the dynamic
programming solution where each subproblem is solved exactly once, its answer is stored, and
looked up each time it is needed again. The dynamic programming solution of the Coin-change
problem fills an array FewestCoins from 0 to the amount of change to be returned. An element of

41 cents

40 cents 36 cents 31 cents 29 cents 31 cents -9 cents

1-cent coin

5-ce
nt

coin

10
-c

en
t c

oi
n 12-cent coin

25-cent coin

50-cent coin

(not feasible)

Figure 3. Remaining change after return each possible coin { 1, 5, 10, 12, 25, 50} for 41 cents.

FewestCoins stores the value of the fewest number of coins necessary for the amount of change
corresponding to its index value. The previously defined FewestCoins recursive relationship is
used to fill an array element. Since the array is filled from smaller to larger indices, we only need
to look up the solution of the smaller subproblems needed. Figure 5 illustrates the subproblem
solutions necessary to calculate the fewest number of coins for 41 cents using the set of coin types
{1, 5, 10, 12, 25, 50}.

FewestCoins:
414036312916

 3 3 4 3 3

FewestCoins(41) = minimum(FewestCoins(40), FewestCoins(36), FewestCoins(33),
FewestCoins(29), FewestCoins(16)) + 1 = 3 + 1 = 4

5
10

12
25

1

Previously Calculated

Figure 5. Dynamic program calculation for 41 cents using coin types of {1, 5, 10, 12, 25, 50}.

If we record the best first coin to return (found in the “minimum” calculation) for each change
amount in an array BestFirstCoin, then we can easily recover the actual coin types to return.
Figure 6 shows the BestFirstCoin array for the 41-cent solution with coin types {1, 5, 10, 12, 25,
50}.

FewestCoins:
41

 3

41
 2510

16 6
 5

 1
 1

 0
 0

 4
16 6 1 0

 2 1 0

41 - 25 = 16 16-10 = 56-5=1
BestFirstCoin:

Figure 6. Relevant BestFirstCoin entries for 41 cents using coin types of {1, 5, 10, 12, 25, 50}.

Backtracking is another problem-solving technique for optimization problems that can be
demonstrated using the Coin-change problem. The concept of backtracking is probably best
explained by using a state-space/search-space tree that shows the recursive calls performed during
backtracking. Backtracking performs a depth-first search of the state-space tree. To improve
efficiency, we stop following branches of the tree that either cannot lead to a solution or cannot
lead to a better solution than you already have found, i.e, you want to “prune” the state-space
tree. The criteria for pruning are:
1) giving back a coin that is worth more that the amount of change, or
2) giving back one less coin than the best solution and having more change to return.

16

-34 -9 4 6

-46 -44

-48

-49

-49-47

-1 -4

-3

-4

-4-2

3 1

1

0

02

50 50

50

50

50

50

 5 5

 5

 5

 5

 51

1

1

1

.
.

. . .

. . .

. . .

. . .

 50 25 12 10

5

1 1 10

5 coin

3 coin

solution

solution

10 15

5

-40 -359 14

1

50 1 50 1

Pruning Criteria
1) negative amount of change, or

2) one less coin than the best solution
 and more change to return

Figure 7. State-space tree for 16-cents change with coin types of { 1, 5, 10, 12, 25, 50} .

Figure 7 shows the pruned state-space tree for 16-cents change with coin types of {1, 5, 10, 12,
25, 50}.

The biggest problem with backtracking is that it searches the state-space tree in a depth-first
search pattern which might be slow. What we would like to do is march straight down the branch
leading to the best solution. Unfortunately, we do not know the best first choice, but we can
estimate which of the first choices might lead us to the best solution. Later, if we find out that we
made a mistake, then we can backtrack to a node in the tree that looks more promising. By
relaxing the order in which we search the state-space tree, we hopefully search less of the tree and
reach an answer quicker. If the estimate made when evaluating a nodes potential is a bound on
the best solution possible for any node derived from it, then we can use these bounds when
pruning the tree. This type of algorithm is know as a breadth-first search with branch-and-bound
pruning.

For the coin-change problem, we want the bound calculation to be fast. Typically, the bound
calculation is a greedy algorithm. The obvious greedy calculation is the algorithm previously
described, i.e., continue giving back the largest possible coin. While this calculation is useful in
steering the best-first search, it is not useful as a pruning bound since it does not provide a limit of
the best possible solution derivable from that node. As previously shown in figure 2, this greedy
algorithm calculates a six-coin solution for 41 cents with coin types {1, 5, 10, 12, 25, 50} when a
four coin solution exists. One possible pruning bound would be to calculate for a node

,bound =
number of coinsreturned

to reach this node
+

change remaining at this node
value of largest coin � change remaining

but this bound is not very useful in steering the best-first search since most of the siblings have the
same bound. However, by combining the greedy algorithm to steer the best-first search and the
bound calculation to prune the state-space tree a reasonable efficient algorithm can be achieved.
Figure 8 illustrates the best-first search for the coin-change problem for 41 cents with the set of
coins {1, 5, 10, 12, 25, 50}.

41
2 6

41 cents

greedy solution has 6 coinsbound

16

6

3 6

4 4

29

19

31

21

36

26

40

30

3 6

4 6

3 4

4 8

3 4

4 4

3 5

4 4

1
4 4

5
4 4

4-coin solution found, therefore prune nodes with bounds

25 12 10 5 1

25 12 10 5 1

5 1

> 4

Figure 8. Coin-change problem for 41 cent using Best-First search with bound pruning.

Selection Criteria and Other Running Examples

The main criteria for selecting a good running-example problem used to introduce all of the
problem-solving technique are
1) the problem should be amenable to all problem-solving techniques taught, and
2) the problem should be easily understood by students, i.e., the problem should be as concrete

as possible.
Table 1 lists several possible running-example problems with a description of each. All of these
satisfy both criteria.

Suppose that a thief breaks into a jewelry store will a knapsack
with a known weight limit and scale. Find the set of jewelry
items that the thief should steal in order to maximum their
profit (the thief will use the marked price of each jewelry item)
without exceeding the knapsacks weight limit.

0-1 Knapsack problem

Given a weighted, directed graph G = (V, E). Find the
minimize cost (tour) simple cycle that visits every vertex in the
graph.

Traveling Salesperson
Problem (TSP)

Given an n x n cost matrix where each row contains the cost of
assigning a person to each job. Find the minimum assignment
of all n people to the n jobs such that each person is assigned
exactly one job and no job has two people assigned to it.

Job-Assignment problem
DescriptionProblem Name

Table 1. Other Possible Running-Example Problems

Benefits of Using Running-Example Problems

Using the same running-example problem when introducing each problem solving technique has
several obvious benefits. Since students are familiar with the running-example problem (after the
first problem-solving technique), the students can focus on understanding and learning the new
problem-solving technique without being confused by understanding a new problem. Since the
same running-example problem is being solved using all of the problem-solving techniques,
students are better able to see the similarities and differences of each problem-solving technique.
After seeing the problem-solving technique demonstrated with the familiar running-example
problem, students are better able to apply the problem-solving technique to additional example
problems demonstrating the problem-solving technique being learned.

References

[1] Brassard, G. and Bratley, P., (1996). Fundamentals of Algorithms, Prentice Hall, Inc.
[2] Cormen, T., Leiserson, C., and Rivest, R., (1989). Introduction to Algorithms, MIT Press.
[3] Neapolitan, R. and Naimipour, K., (1998). Foundations of Algorithms: with C++
 Pseudocode, second edition, Jones and Bartlett Publishers, Inc.
[4] Parberry, I., (1995). Problems on Algorithms, Prentice Hall, Inc.

