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Abstract 

Financial forecasting is a very difficult field in part due to the volatility and complex 

interrelationships within economies.  In fact, many prediction algorithms have fallen short of 

providing an accurate account of future financial trends. In our preliminary investigation, we 

used the Black-Scholes model to predict the theoretical price of a European stock option. The 

algorithm was implemented in java code, which will serve as springboard to refine the basic 

approach and explore alternative mathematical methodology that could be used to more 

accurately compute the price of a given option. In this preliminary investigation, we pulled data 

in spreadsheet format from the Yahoo financial site. Subsequent efforts will aim at pulling stock 

option prices in near real time from a financial site and feeding them into the java code.  

Subsequent research by the authors’ plan is twofold. First, to improve upon modeling the 

variability using variations of Heston’s approach and second to take the original Black-Scholes 

equation and convert it to a series of partial differential equations. 
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Introduction 

Financial forecasting is a very difficult field in part due to the volatility and complex 

interrelationships within economies.  In fact, many prediction algorithms have fallen short of 

providing an accurate account of future financial trends. One of the bright spots in this field is 

the Black-Scholes approach [1], which defines the theoretical price of a European option. The 

goal of this paper is to refine the basic approach and to explore an alternative mathematical 

methodology that could more accurately compute the price of a given option. Further, a second 

goal is to develop software that can automate the calculation of such options and explore 

methodology to extract the data from the internet in near real time. Verifying the accuracy of the 

algorithm can be determined when the underlying asset is traded, on and the price of the option is 

set by, the market.  

 A main parameter in determining the value of an option is the expected volatility of the 

underlying asset. Fluctuations in asset prices directly affect (change) the value of the option. 

Therefore, to create successful algorithms the modeling of volatility is key. In this paper, the 

primary focus will be on to create a template using java code that will be used to integrate the 

Heston stochastic volatility model [2] into the Black-Scholes model. Specifically, Heston’s 

approach generalizes the Black-Scholes (BSM) model and includes it as a special case. Heston’s 

model can express the price of a process based on drift and non-constant volatility. The approach 

used by Heston is to model volatility as a diffusion process. In this application, the characteristic 

function models volatility instead of the probability density function. In the proposed approach, 

formulation of the algorithm can be generalized to other cases such as dividend payments, 

options and underlying assets denominated in foreign currencies. This paper will devise a java 

framework and test the basic Black-Scholes model using a cumulative standard normal 

probability distribution. In a subsequent paper, we will test several prediction algorithms using 

Heston’s generalized approach to the BSM and compare accuracy to classical prediction 

algorithms on several different option dividend and currency models.  

Literature Review 

Before introducing Heston’s approach a discussion of the Black-Scholes model (BSM) and 

associated terms are appropriate. The pricing of options is an extensively studied field. Early 

approaches ranged from simple statistical models to general equilibrium models. A main 

justification for the extensive study of options is their simple structure could lead to a general 

theory of contingent-claims pricing [9]. The specification of general option pricing theory is also 

a major step toward a theory of pricing a firm’s liabilities, the term and risk structure of interest 

rates, and speculative markets [3]. The BSM relates the theoretical price of a call option to the 

value of the stock (S), the days until the option expires (T), the option strike price (K), the risk 

free rate (R), and the daily stock volatility (σ).  The stock price refers to the value of a single 

stock on a given exchange. The day until the option expires refers to the date of maturity for the 

option. On this date, the buyer of the call option has the choice to either exercise the option or let 

it expire. The holder of the option will exercise the option if the stock price is greater than the 



strike price and will let the option expire if the stock price is less than the strike price. There are 

several assumptions underlying the BSM: (1) the short-term interest rate is known and is 

constant through time, (2) the stock price follows a random walk in continuous time and its 

variance is proportional to the square of the stock price, (3) the stock pays no dividends or other 

distributions, the option is European (it can only be exercised at maturity), (4) there are no 

transaction costs to buying/selling the stock or the option, (5) it is possible to borrow any fraction 

of the price of a security to buy or hold it, at the short-term interest rate [3]. To state succinctly 

the model prices call options than cannot be exercised early, on assets that pay no dividends 

(unless adjustments are made), with the underlying asset following a geometric Brownian motion 

with constant drift and volatility, and the interest rate remains constant as well. For the BSM   

only volatility of the underlying asset matters in the pricing of the option. The excepted rate of 

return on the stock is inconsequential for pricing options because BSM relates the level of 

Brownian motion, instead of the stock price, to the price of the option [4]. However, Brownian 

motion dictates that implied volatility would be constant through time, across strike price, and 

maturities [1]. Geske and Roll note the BSM model tend to exhibit biases when used to value 

American Call options [6]. This is consistent with the notion that the right to exercise an option 

early always has a nonnegative value [9]. The BSM model has computational biases because 

there is not a way to treat dividends and thus the probability of an early exercise is not handled 

properly. If the underlying asset does not pay any dividend, the Black-Scholes model still tends 

to misprice options due to variance (volatility) biases. There are many commonly used methods 

of option pricing models other than the Black-Scholes model such as constant elasticity of 

variance, stochastic volatility, and jump-diffusion models. In his 1995 working paper, “Testing 

Option Pricing Models” David Bates uses stock options, options on stock indexes and stock 

index futures, and options on currencies and currency futures to discuss and summarize empirical 

techniques and major conclusions from the literature. Bates states alternative models differ in 

their assumption of the distribution of option prices and the options underlying asset. There are 

two basic approaches for tests of consistency found in the literature: those that estimate 

distributional parameters from time series data and those that estimate model-specific parameters 

implicit in option prices and test distributional predictions for the underlying asset [2].  Several 

papers have attempted to examine the overall consistency of stock volatility with stock option 

prices. Black and Scholes, along with  atan  and Rendleman find that high-volatility stocks tend 

to have high options prices [2]. Black and Scholes noted concern that high-volatility stocks 

tended to over predict and low-volatility stocks tended to under predict option prices linked to 

the asset. Many subsequent studies tried to explain the apparent discrepancy by accounting for 

early-exercise premiums and bid/ask-related biases. Event studies relating predictable volatility 

changes to specific one-time events have had mixed results [2]. Increases in implicit volatilities 

up until earnings calls (Patell and Wolfson 1979) and seasonal variations near the end of the year 

and into January (Maloney and Rogalski) have been noted by previous studies.  Interestingly 

enough, predictable increases in stock volatility following stock splits were not reflected in 

option prices (Sheikh 1989). The non-stationary nature of stock volatilities is well known and 

may be remedied with a stochastic volatility model.  

Steven Heston, in his paper, “A Closed-Form Solution for Options with Stochastic Volatility 

with Applications to Bond and Currency Options” developed an option pricing model for a 



European call option on an asset with stochastic volatility. The main contribution of the paper is 

that the solution is in closed form and thus less computationally intensive than other stochastic 

volatility models. Stochastic volatility models are also advantageous because correlations 

between the option and the underlying asset do not need to be perfectly correlated [1]. Heston 

shows that if the volatility follows an Ornstein-Uhlenbeck process, then it follows that the 

correlation is ρ [7]. To state it mathematically: 
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Where    is the pricing of the underlying asset at time t, r is the risk free rate,    is the variance at 

time t,  ̅ is the historical variance, a is the mean-reversion speed,   is the volatility of the 

variance process, and    
     

  are Weiner processes correlated with coefficient  . The mean-

reversion attribute of the Heston model is important because it implies that volatility does not 

explode to infinity or go to zero, which is unusual in financial data. It also allows the calculation 

of dependence between asset returns and volatility [5]. He notes the implied variance from 

option prices may not equal the variance of spot returns given by the true process [7]. To 

estimate the true process, Heston argues, researchers could use the true spot-price process (a time 

series of spot prices) to compute the risk-premium parameter by using the average returns of 

options hedged against changes in the spot asset [7]. Alternatively, one could use parameters 

implied by option prices. The stochastic volatility model proposed by Heston also can deal with 

any variance biases mentioned above by linking the spot asset returns to option prices. A stock 

price can be modeled with stochastic volatility by first showing the stock price follows the 

diffusion process:  

                     
             (2)[1] 

where    is a vector of size m of state variables,   
  is the standard Brownian motion,       is a 

function of     of size m, and      is a m × m matrix-valued function [1]. Here the stock price is 

a function of    so it follows        . AÏt-Sahalia and Kimmel note in practice the stock price 

or the logarithm of the stock price is a state variable in  . To satisfy the no arbitrage assumption 

AÏt-Sahalia and Kimmel rely on earlier theoretical grounds of a class of agents from Harrison 

and Kreps (1979). Under the “equivalent martingale measure”, Q the state vector follows a 

similar process above:   
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with the traded asset satisfying    
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where r is the risk free rate (usually measured by short-term treasury yields, and   are dividend 

payments. For simplicity, AÏt-Sahalia and Kimmel assume that   is constant. From the equations 

above, an investment in a stock must have an instantaneous expected value of the risk free rate, 

its mean is only dependent on the stock, but the volatility can depend on any of the variables 

including  . Further specification of the volatility parameter and payoff expectations the 

equation simplifies as follows: 
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with the ultimate consequence being changes in derivative securities being perfectly correlated 

with changes in the stock price [10]. In a stochastic volatility model, the general assumptions 

relating to volatility do not hold. Namely, volatility is not just a function of the stock price but 

one of several state variables that need to be introduced.    

 

A significant challenge to estimating stochastic volatility models is that the transition density of 

the state vector is rarely known and some state variables that are used to calculate volatility are 

rarely observed.  AÏt-Sahalia and Kimmel point out in their paper, “Maximum likelihood 

estimation of stochastic volatility models” that estimation of stochastic volatility models is 

reduced to a filtering problem when just the asset prices are observed. The authors also argue the 

additional state variables can be extracted from option prices (e.g. at-the-money short maturity 

option). The paper develops a method of maximum likelihood estimation for both scenarios. 

Maximum likelihood estimation models are rarely used in finance because the variables are 

observed in discrete time and the theoretical models are in continuous time [1]. This reinforces 

the need for the idea to be able to pull stock values from the internet in near real time. Previous 

work had been done by AÏt-Sahalia (2001) to develop series approximations of the likelihood 

function at discrete time intervals. The effect of the approximation can be measured by 

calculating the volatility from the observed asset and option prices and comparing results to the 

implied volatility of an at-the-money-short maturity option [1]. A finding from AÏt-Sahalia and 

Kimmel is the error from calculating the implied volatility of an at-the-money short maturity 

option is often smaller than the one introduced from calculating the parameters and leads to 

efficiency gains. The authors show the feasibility of their results on four types of models: 

stochastic volatility model (Heston), a GARCH stochastic volatility model, and a constant 

elasticity volatility model using Monte Carlo simulations. The authors then use real world data 

from January 2
nd

, 1990 to September 30, 2003 further motivating their results. The authors find 

that the maximum likelihood estimation technique can be applied to the Heston model accurately 

and efficiently. The computation time ranges from a few minutes when volatility is unobserved 

and even less when a proxy for volatility is used.   

Implementing option pricing models can be computationally difficult. Recent advances in 

computational power and option pricing theory have allowed researchers to implement option 

pricing models. Hurn et al. in their paper, “Estimating the Parameters of Stochastic Volatility 

Models Using Option Price Data”, develop a maximum likelihood method for estimating the 

parameters of the stochastic volatility model. Their method combines the power of graphical 

processing units and parallel computing methods to manage the load of the pricing method. The 



data set used in the study is comprised of S&P index from January 2
nd

, 1990 to June 30
th

 2012 

for 4,459,751 observations, over 5672 trading days, and 600,764 call and put options. Other 

studies have used S&P 500 index options because, unlike some indexes, the options are 

European options [10]. While the options are European there are dividend payments made on the 

underlying stock so an adjustment must be made
1
 [10]. A common method to reduce the 

computational load in the non-parametric setting is to reduce the time dimension of the data set 

or reduce the cross section element (number of options).  The use of particle filters in estimation, 

which requires Monte Carlo integration over unobserved volatility states, can take six months to 

complete a data set of 18,000 particles and 10 option prices on each day of the entire data set 

when estimating Heston’s model [8].  The largest computational component when evaluating 

Heston’s model is tied up in evaluating exponential, logarithmic and trigonometric functions [8]. 

Rearrangements in the pricing formula can reduce the number of trigonometric functions needed 

from four to two [8]. In the simulation experiments run by Hurn et al., for any call option with 

maturity T and strike price K once exponential function and two trigonometric function was 

needed to find the solution for its price. To implement Heston’s model a researcher needs a way 

to decide which options to use in the estimation procedure. Since it cannot be guaranteed that the 

options are priced using Heston’s model, one course of action, following Eraker (2004), is to 

draw a random option that is traded on the first day of the sample. Once the option is no longer 

traded another option is picked etc. [8]. Another option, which is used by Hurn et al., is to study 

the most liquid options. A measure of how well the particle estimation methods do is to measure 

its ability to track the VIX (Implied Volatility Index). Essentially, the VIX uses European put 

and call options to represent the average of the implied stock market volatility over the next 30 

calendar days. The most significant contribution here is that modern computing hardware is 

powerful enough to estimate a large number of option prices using Heston’s stochastic volatility 

model over a large number of days using GPUs. This ultimately a problem that will be addressed 

in future research. In the current paper, the goal is to create software using the basic equations 

and extract data from the internet in basic in batch. So this paper could be viewed a simply a 

proof of concept paper. Improving the equations and pulling the data in near real time are 

subsequent steps to the current paper. 

 

Software Development Methodology 

1.1 Background 

The software development projects begins with an interface that allows the user to pick a data set 

which is downloaded into a standard EXCEL spreadsheet from the Yahoo stock center [11]. See 

the figure below. 

  



 

 

 

 

 

 

 

 

 

 

Figure 1: Home Screen 

 

As stated earlier, the preliminary algorithm that was implemented involved calculating the 

theoretical value of a European call option. Java was selected as the developmental language 

because it is a C derivative, object oriented, has rich library options, and is the language of 

choice in the School of Business in which the authors’ reside. This java application takes the 

input as defined from the drop box above as a .csv file, which in turn generates the call option 

values in .csv file. A sample csv file generated by the java application appears below 

 

Figure 2: Sample CSV File  

Specifically, the field description of csv file appears below: 

Column A is the Current Stock Price 

Column B is days until expiration 

Column C is Option Strike Price 

Column D is Monthly Stock Volatility 

Column E is risk free interest rate 



Column F is Value of European call option (generated by the java application). 

 

1.2 Implementation 

The Java application was developed using a GUI toolkit Java Swing. There are three main 

components within this application. The first is opening the file browser (which is used to 

browse and select the file). The second component allows parsing of the CSV File, the third then 

calculates the theoretical value of a call option. To implement this design three methods were 

created: openFileBrowser, parseCSV, and callBlackScholes. The figure below depicts the 

interrelationship pf these modules.  

 

 

 

 

 

 

 

 

Figure 3: Java Swing Model  

 

 

 

To clarify the purpose of each method a brief discussion and the source appear below. 

1.2.1 openFileBrowser  

By clicking the “choose” button the method is called. The objective of this function is to open 

the native file browser from the application. This will allow the user to choose the csv file. This 

will ultimately generate a URI (universal resource indicator) to locate the file, which is then 

passed to the parseCSV method. The source code for this method appears below. 

private void openFileBrowser() { 

 

fc = new JFileChooser(); 

FileNameExtensionFilter filter = new FileNameExtensionFilter("Comma Seperated Files", 

"csv"); 

fc.setFileFilter(filter); 



int returnVal = fc.showOpenDialog(frame); 

 

if (returnVal == JFileChooser.APPROVE_OPTION) { 

System.out.println("You chose to open this file: " + fc.getSelectedFile().getName()); 

textField.setText(fc.getSelectedFile().getPath()); 

parseCSV(fc.getSelectedFile().getPath()); 

} 

 

} 

 

1.2.2 parseCSV  

This method is called after the file is chosen from the file browser. It passes one argument string 

which is the path indicator of the selected file. Then the file can be opened using FileReader and 

buffered using BufferedReader. The BufferedReader will allow efficient reading every line until 

the end of file is reached. As would be expected in a CSV file, each line is comma delimited, 

allowing easy storage in an array. Now these values are passed to the callBlackScholes method 

which returns the call option values. Finally, after the method has calculated all of the call option 

values they are stored in a CSV file. This strategy would make it easy for a typical financial end 

user to take advantage of this system. Below is the source code for parseCSV 

private void parseCSV(String csvFile) { 

BufferedReader br = null; 

String line = ""; 

String cvsSplitBy = ","; 

int i = 0; 

String sFileName = "C:\\Users\\riz\\Desktop\\bs1.csv"; 

FileWriter writer = null; 

 

try  

{ 

writer = new FileWriter(sFileName); 

br = new BufferedReader(new FileReader(csvFile)); 

while ((line = br.readLine()) != null) { 

 

if (i != 0) { // use comma as separator 

String[] country = line.split(cvsSplitBy); 

 

 

double cv = callBS(Double.parseDouble(country[0]), 

Double.parseDouble(country[2]), 

Double.parseDouble(country[4]), Double.parseDouble(country[3]), 

Double.parseDouble(country[1])); 

 

writer.append(country[0]); 

writer.append(','); 



writer.append(country[1]); 

writer.append(','); 

writer.append(country[2]); 

writer.append(','); 

writer.append(country[3]); 

writer.append(','); 

writer.append(country[4]); 

writer.append(','); 

writer.append(String.valueOf(cv)); 

writer.append('\n'); 

 

} 

i++; 

} 

writer.flush(); 

    writer.close(); 

 

} catch (FileNotFoundException e) { 

e.printStackTrace(); 

} catch (IOException e) { 

e.printStackTrace(); 

} 

} 

 

1.2.3 callBlackScholes  

This method is used to generate the call option value. It evaluates five double arguments i.e. 

current stock price, option strike price, risk free interest rate, daily stock volatility and days until 

expiration. The result is returned as a double value. The figure below shows the mathematical 

equation for the Black-Scholes model used in this method.  

  To calculate the option price, we have create a method callBS 

   

   

Figure 4: Black-Scholes Equation 

Where, 

 

  Figure 5: Variable d1 Solution                    Figure 6: Variable d2 Solution 

To calculate the option price the program calls a method named callBS. The source code of the 

method is below.  



public static  double callBS(double sp, double xp, double rr, double si, double t){ 

   

double result =0, d1=0,d2=0; 

 

  NormalDistribution nd = new NormalDistribution(0,1); 

   

d1= (Math.log(sp/xp) + ((rr/365)+((si*si)/2))*t) / (si * Math.sqrt(t));  

  d2 = d1 - si * Math.sqrt(t); 

   

result = sp * nd.cumulativeProbability(d1) - xp * Math.exp(-rr * (t/365)) * 

nd.cumulativeProbability(d2); 

 

  if(result<0) 

   result = 0; 

   

  return result; 

   

 } 

For calculating the cumulative standard normal probability distribution the java class 

NormalDistribution, which is contained in an open source library, is used. This Class has a 

method called cumulativeProbability that can be used to calculate the cumulative standard 

normal probability distribution. This modular approach will make it easy in subsequent versions 

of the project to integrate other distributions like the one used by Heston. 

 

Java equivalent of d1 is below  

d1= (Math.log(sp/xp) + ((rr/365)+((si*si)/2))*t) / (si * Math.sqrt(t)); 

 

Java equivalent of d1 is below  

d2 = d1 - si * Math.sqrt(t); 

 

 

Java equivalent of C is below  

result = sp * nd.cumulativeProbability(d1) - xp * Math.exp(-rr * (t / 365)) * 

nd.cumulativeProbability(d2); 

 

Below is a sample output generated from the above java code above. 

 



 
 

Figure 7: Sample Output 

 

 

Discussion/Conclusions 

Financial forecasting is a very difficult undertaking due to complex interrelationships within 

economies.  While many algorithms and variations of those algorithms have been developed, 

many have fallen short in providing accurate predictions of future financial trends. One of the 

most successful algorithms in this area is the Black-Scholes approach. In our preliminary 

investigation, we used this approach to model the theoretical price of a European stock option. 

This algorithm was implemented in java code and will be used as springboard to further refine 

the basic approach and to explore alternative mathematical methodology that could be used to 

more accurately compute the price of a given option. The second goal of this project was to 

develop software that can automate the calculation of such options and explore methodology to 

extract the data from the internet in near real time. In this case, we pulled data in spreadsheet 

format from the Yahoo financial site. Subsequent efforts will be aimed at pulling the stock 

options in near real time from a financial site and feeding them into the java code.  

While verifying the accuracy of the algorithm used herein was quite simple, as improvements in 

the algorithmic design occur the difficulty to verify increases. The authors’ plan is twofold. First, 

to improve upon modeling the variability using variations of Heston’s approach. Second, to take 

the original Black-Scholes equation and convert it to a series of partial differential equations. 
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