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Abstract 
 

The 0-1 Knapsack problem is a combinatorial optimization problem in which the subject 

must maximize the value of potential items for placement in a knapsack without 

exceeding its size constraint. This problem has been used in a variety of applications such 

as aiding financial investment problems as well as by Non-Governmental Organizations 

in supplying relief effort. 

 

This paper focuses primarily on the best-first implementation of the branch-and-bound 

algorithm with thorough experimentation. Our experiments showed that the value which 

most directly affects the runtime of the algorithm was related to the size of the knapsack 

instead of the number of items. While the total number of items to choose to place in the 

knapsack did affect the runtime (as it has previously been found to do so), it was found 

that the size of the knapsack had an even greater effect on the runtime. 
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1 Problem Description 
 

There exists a knapsack of predetermined size K, and several potential items each with a 

size s and value v. Each item can either be included in the knapsack or not included in the 

knapsack but cannot be partially included in the knapsack. 

 

The subject is charged with placing items into a knapsack with the intent of maximizing 

obtained value without exceeding K, the size restriction, i.e., the goal is to maximize the 

value within the size constraint of the knapsack. [3] This can be expressed by 
 

max ∑ 𝑣𝑘

𝑖

𝑘=1

                         𝐾 ≥ ∑ 𝑠𝑘

𝑖

𝑘=1

 

 

where i is the total number of items placed in the knapsack.  

 

A prime example of the 0-1 Knapsack Problem involves a hypothetical burglary. The 

subject of this scenario is the burglar, and he or she is attempting to steal potential items 

from a random individual’s house. These items may be of great, little, or no significance 

in terms of value. Due to the size constraint on the knapsack he or she is carrying, the 

burglar would likely have forgo acquiring a valuable grandfather clock and settle for a 

less valuable but highly portable necklace. 

 

 

2 Approaches to Solving the 0-1 Knapsack Problem 
 

We researched three major approaches, aside from branch-and-bound, to the 0-1 

Knapsack Problem: brute force, the greedy approach, and dynamic programming.  

 

 

2.1 Brute Force Algorithm 
 

The brute force approach to the 0-1 Knapsack Problem lists every possible combination 

of potential items taking into consideration the size constraint on the knapsack. Then, the 

algorithm finds the combination of highest value. This particular approach is not 

efficient; its runtime is O(2𝑛). Thus, it is rarely used. 

 

 

2.2 Greedy Algorithm 
 

There are three distinct strategies for implementing the greedy approach. The first 

strategy is to locate the item with the greatest value and then fill the knapsack with the 

particular item without violating its size restriction [2]. As soon as the initial item is 
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appropriately utilized, the next most valuable item is placed into the knapsack. This 

process is repeated until no more items can be placed in the knapsack without violating 

its size constraint [2]. This strategy is rarely optimal because there is a great risk of 

meeting the size constraint with relatively few high-valued items whereas several smaller 

and slightly lower-valued items would make a better solution. 

 

The second strategy for implementing the greedy approach is to fill the knapsack with the 

item of smallest size and continually move to the next smallest item until no more items 

can be placed in the knapsack [2]. This “smallest-first” strategy is not optimal because 

the knapsack could potentially contain a large number of small non-valuable items, 

neglecting to incorporate valuable, albeit large, items. 

 

The third strategy considers the ratio of the object value to its size, hereafter considered 

the unit cost of the item. This strategy starts by placing the item with greatest unit cost 

into the knapsack and proceeds to the next greatest unit cost.  

 

This third strategy will reach optimization when partial inclusiveness is allowed (an item 

can be partially included in the knapsack); however, it is not guaranteed to reach an 

optimal solution for the 0-1 Knapsack Problem without trial and error. Thus, the greedy 

approach to the 0-1 Knapsack Problem is considered heuristic. 

 

 

2.3 Dynamic Programming 
 

The dynamic programming approach to the 0-1 Knapsack Problem divides the problem 

into “sub-problems”. First, the algorithm determines whether or not to place the item of 

greatest value in the knapsack [3]. A that point, there are fewer items remaining for 

consideration. This process is repeated continually with recursion until the knapsack is 

filled without exceeding the size constraint [3]. The average runtime for the dynamic 

programming approach to the 0-1 Knapsack Problem is O(nK), where K is the size 

constraint on the knapsack and n is the number of items [1]. 

 

 

3 Branch and Bound 
 

There are two predominant implementations of branch-and-bound: breadth-first, and 

best-first. We implemented each of these approaches to the 0-1 Knapsack Problem. 
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3.1 Breadth-First 
 

The breadth-first approach uses a queue to hold potential nodes of items according to 

their potential increase to the overall value of the knapsack (bound). This approach 

considers whether or not a node is promising according to whether or not the value of the 

knapsack would be greater if this item were to be placed in without exceeding the size 

constraint. However, once the algorithm has traversed a path, it backtracks to the last 

parent where the bound was still considered promising and evaluates the other children 

[3]. Because of this, sections of the state-space-tree on which the algorithm is executed 

are considered when they could have been eliminated prior to traversal. 

 

 

3.2 Best-First 
 

The best first approach utilizes a state-space-tree which consists of an initial state, a goal 

state, intermediate states, and transforming operators with pre-conditions and post-

conditions [4]. For the 0-1 Knapsack Problem, the initial state is the empty knapsack, the 

goal state is the optimized knapsack within the size constraint, and the intermediate states 

are the various states of the knapsack with different item combinations but have not 

reached optimization [3]. 

 

The best-first algorithm eliminates unnecessary path traversals in the state-space-tree 

using the bounds on the nodes. These bounds indicate whether or not the traversal is 

promising; if the bound is greater than the total value of the root, it is considered 

promising. After this, the algorithm traverses the child that is most promising and 

continues this process until the solution cannot be further optimized. Unlike breadth-first, 

best-first does not traverse each child before eliminating the parent node. However, with 

best-first, the most promising traversal is not always the optimal solution; in many cases 

the algorithm has to backtrack and find a different path within the state-space-tree [3]. 

 

In summary, the key idea behind this algorithm is to calculate whether or not a 

combination of items is promising, then traverse the path and backtrack according to 

whether or not the size constraint is violated or more promising nodes appear. 

 

 

4 Algorithm Description 
 

We considered a variety of sources and implementations when exploring the algorithm; 

we decided that the work of Richard Neapolitan best suited our understanding of the 

branch-and-bound algorithm [3]. We adopted the general ideas behind the best-first 

implementation and the bound function implementation as described below.  
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The algorithm works with a linked-list of specified items which can be randomly 

generated or manually created, and an integer representing the size constraint on the 

knapsack. Each item is defined with its size and value. The state-space-tree consists of 

nodes whereby each node represents the current status of the knapsack with an integer 

representing the value of the items and a linked-list of the items in the knapsack. 

 

The core of the algorithm is a ‘while’ loop that runs until the linked-list of nodes, 

considered a priority-queue, is empty. During the first run of the loop, the first node in 

the linked-list is retrieved and its values are held in a node variable, v. Then, a second 

node, u, is initialized to be empty and its values are calculated according to the values of 

v. The level, within the state-space-tree, of u is calculated according to the level of v; the 

level of u is always one greater than the level of v. The size of node u is equivalent to the 

sum of the size of v and the level position of u. The final component of node u is 

computed according to whether or not observing another node along the current traversal 

is promising; that is, whether or not the total size of the considered items is within the 

size constraint, and the value is greater than the value at the root of the current subtree. 

 

Once these calculations are performed, the size of u is compared with the size constraint 

on the knapsack, and the value of u is compared with the previously obtained maximum 

value. Then, the new maximum value is set accordingly. The algorithm then adds node u 

to the linked-list if its potential value is greater than the previously calculated maximum 

value. Before the while loop starts its next run, u is reset, and the component calculations 

are performed again. 

 

After the while loop reaches its terminating condition, the maximum value is printed.  

 

 

4.1 Pseudocode 
 

ALGORITHM BestFirstBranchAndBound (LinkedList <Items> Items, int 

MaxSize) 

//Input:  A linked-list (priority-queue) of items for 

consideration 

   The size constraint on the knapsack (MaxSize) 

//Output:  The maximum value of the knapsack found by the 

algorithm 

//Precondition: The items are organized according to input 

 

//n = number of items 

 

PriorityQueue<Node> PQ //initialized empty 

Size[n], Value[n] 

Node u, v (parameters: level, value, weight, bound) 

 

MaxValue = 0 

Initialize the root, v(level  -1, all else 0) 



5 

 

PQ.insert(v) //insert if possible 

 

while (PQ is not empty) 

 v  PQ.deleteMax(“pop” the first node) 

  

 reset_u 

 

 if(u.size does not exceed MaxSize & u.value exceeds MaxValue) 

  Max Value  u.value 

 if(u.bound exceeds Max Value) 

  PQ.insert(u) 

 

 reset_u 

  

 if(u.bound exceeds Max Value) 

  PQ.add(u) 

 

return Max Value 

 

Method reset_u 

 u = empty 

 if(v.level = -1) 

  u.level  0 

 else if (v.level != (n-1)) 

  u.level  v.level + 1 

 u.size  v.size + Size[u.level] 

 u.value  v.value + Value[u.level] 

 u.bound  Bound(MaxSize, n, Size, Value) 

 

 

The branch-and-bound algorithm has the potential to generate all possible combinations 

of items depending on bound calculations of items [3]. 

 

 

4.2 Memory and Time Requirements 
 

The algorithm requires a linked-list to store the potential items, a linked list or priority-

queue to store the item combination nodes, and two arrays to hold the size and values of 

each item. Therefore, the memory requirements are O(N), where N is the number of 

items in the knapsack. While the runtime of the algorithm is exponential in the worst 

case, the real time of the algorithm is considerably quick due to the pruning of the search 

tree [3]. 

 

 

5 Results 
 

Experimentation was performed utilizing three approaches: randomized generation, 

manual input, and verification of previous work. For the randomized generation 
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experiments, we developed a program to generate potential items in large quantities and 

output the resulting optimized value. The manual input and verification testing required 

little in the way of additional programming. Most of the data sets were unique in that they 

did not come from other sources; however, for the purpose of ensuring accuracy with the 

algorithm, a single data set from Richard Neapolitan’s work [3] was used. This seemed 

appropriate given that many components of our algorithm were inspired by his 

pseudocode. The randomized tests served to test the time requirements given various 

values for each significant aspect of the randomized generator. The input and verification 

tests were performed to exploit weaknesses of the branch-and-bound algorithm and test 

its accuracy. The following tables and figures give some insight into the obtained results. 

 

 

5.1 Randomized Sets 
 

 

Table 1: Changes in maxSize (size of the knapsack) 

 

 

Table 2: Changes in n (number of potential items) 

 

Table 3: Changes in the upper bound for item value 

 

Number of 

Items (n) 

Size of Knapsack 

(maxSize) 

Size Upper 

Bound 

Value Upper 

Bound Time 

Output 

(maxValue) 

100 100 10 10 12749 149 

100 70 10 10 47 118 

100 50 10 10 15 92 

100 20 10 10 0 29 

Number of 

Items (n) 

Size of Knapsack 

(maxSize) 

Size Upper 

Bound 

Value Upper 

Bound Time 

Output 

(maxValue) 

50000 50 10 10 3000 101 

10000 50 10 10 78 99 

5000 50 10 10 16 87 

500 50 10 10 0 104 

120 50 10 10 0 78 

Number of 

Items (n) 

Size of Knapsack 

(maxSize) 

Size Upper 

Bound 

Value Upper 

Bound Time 

Output 

(maxValue) 

1000 500 100 200 0 2075 

1000 500 100 80 0 1006 

1000 500 100 70 16 781 

1000 500 100 60 0 539 

1000 500 100 50 16 472 

1000 500 100 40 0 326 
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Table 4: Changes in the upper bound for item size 

 

Based on these results, it appears as though the time required to compute the optimal 

value increases in several situations: as the size upper bound decreases, as the number of 

items increases, and as the size of the knapsack increases. While the results from Table 3 

are not insignificant, they do not give much insight into the effect of value on runtime. 

 

 

5.2 Manual Input / Verification Testing 
 
Watch - Value: 40; Size: 2 
Painting - Value: 30; Size: 5 
Television - Value: 50; Size: 10 
Doll - Value: 10; Size: 5 
The optimal solution for the items given, and the size constraint 16 is: 90 
 

Figure 1: Verification data set – from Neapolitan 

 
Doll - Value: 8; Size: 2 
Painting2 - Value: 18; Size: 6 
Painting - Value: 20; Size: 7 
Brick - Value: 2; Size: 18 
Television - Value: 30; Size: 18 
The optimal solution for the items given, and the size constraint 25 is: 46 
 

Figure 2: Exploiting the “cropping” tendency of the branch-and-bound algorithm (should 

be 56) 

 

The results from Figure 1 were expected given that the dataset was from Neapolitan’s 

work [3]. Figure 2 concerns a dataset designed for the purpose of testing the algorithm, 

its results were verified manually.  

 

 

6 Conclusion 
 

To summarize our research, bar the dynamic programming approach, the branch-and-

bound approach to the 0-1 Knapsack Problem is comparable in terms of runtime to 

various other algorithms. The runtime of branch-and-bound is greatly affected by the 

Number of 

Items (n) 

Size of Knapsack 

(maxSize) 

Size Upper 

Bound 

Value Upper 

Bound Time 

Output 

(maxValue) 

1000 500 150 100 0 620 

1000 500 80 100 47 1010 

1000 500 70 100 16 1566 

1000 500 60 100 1110 1411 

1000 500 50 100 15937 1996 
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number of potential items, the size constraint on the knapsack, and the size of each item. 

And, finally, our implementation was successful in providing a solution to the 0-1 

Knapsack Problem, given that branch-and-bound is renowned for sometimes selecting a 

solution that is not the optimal solution. Regarding further work, it seems as though an 

organizational function would be useful for inserting the potential items into the linked-

list in such a way that the optimal is achieved more often if not every time the algorithm 

is run. 
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