
0-1 Knapsack Optimization with Branch-and-Bound

Algorithm

Salem Hildebrandt & Christopher Hanson

Computer Science

Simpson College

701 North C Street; Indianola, Iowa 50125

salem.hildebrandt@my.simpson.edu; christopher.hanson@my.simpson.edu

Abstract

The 0-1 Knapsack problem is a combinatorial optimization problem in which the subject

must maximize the value of potential items for placement in a knapsack without

exceeding its size constraint. This problem has been used in a variety of applications such

as aiding financial investment problems as well as by Non-Governmental Organizations

in supplying relief effort.

This paper focuses primarily on the best-first implementation of the branch-and-bound

algorithm with thorough experimentation. Our experiments showed that the value which

most directly affects the runtime of the algorithm was related to the size of the knapsack

instead of the number of items. While the total number of items to choose to place in the

knapsack did affect the runtime (as it has previously been found to do so), it was found

that the size of the knapsack had an even greater effect on the runtime.

1

1 Problem Description

There exists a knapsack of predetermined size K, and several potential items each with a

size s and value v. Each item can either be included in the knapsack or not included in the

knapsack but cannot be partially included in the knapsack.

The subject is charged with placing items into a knapsack with the intent of maximizing

obtained value without exceeding K, the size restriction, i.e., the goal is to maximize the

value within the size constraint of the knapsack. [3] This can be expressed by

max ∑ 𝑣𝑘

𝑖

𝑘=1

 𝐾 ≥ ∑ 𝑠𝑘

𝑖

𝑘=1

where i is the total number of items placed in the knapsack.

A prime example of the 0-1 Knapsack Problem involves a hypothetical burglary. The

subject of this scenario is the burglar, and he or she is attempting to steal potential items

from a random individual’s house. These items may be of great, little, or no significance

in terms of value. Due to the size constraint on the knapsack he or she is carrying, the

burglar would likely have forgo acquiring a valuable grandfather clock and settle for a

less valuable but highly portable necklace.

2 Approaches to Solving the 0-1 Knapsack Problem

We researched three major approaches, aside from branch-and-bound, to the 0-1

Knapsack Problem: brute force, the greedy approach, and dynamic programming.

2.1 Brute Force Algorithm

The brute force approach to the 0-1 Knapsack Problem lists every possible combination

of potential items taking into consideration the size constraint on the knapsack. Then, the

algorithm finds the combination of highest value. This particular approach is not

efficient; its runtime is O(2𝑛). Thus, it is rarely used.

2.2 Greedy Algorithm

There are three distinct strategies for implementing the greedy approach. The first

strategy is to locate the item with the greatest value and then fill the knapsack with the

particular item without violating its size restriction [2]. As soon as the initial item is

2

appropriately utilized, the next most valuable item is placed into the knapsack. This

process is repeated until no more items can be placed in the knapsack without violating

its size constraint [2]. This strategy is rarely optimal because there is a great risk of

meeting the size constraint with relatively few high-valued items whereas several smaller

and slightly lower-valued items would make a better solution.

The second strategy for implementing the greedy approach is to fill the knapsack with the

item of smallest size and continually move to the next smallest item until no more items

can be placed in the knapsack [2]. This “smallest-first” strategy is not optimal because

the knapsack could potentially contain a large number of small non-valuable items,

neglecting to incorporate valuable, albeit large, items.

The third strategy considers the ratio of the object value to its size, hereafter considered

the unit cost of the item. This strategy starts by placing the item with greatest unit cost

into the knapsack and proceeds to the next greatest unit cost.

This third strategy will reach optimization when partial inclusiveness is allowed (an item

can be partially included in the knapsack); however, it is not guaranteed to reach an

optimal solution for the 0-1 Knapsack Problem without trial and error. Thus, the greedy

approach to the 0-1 Knapsack Problem is considered heuristic.

2.3 Dynamic Programming

The dynamic programming approach to the 0-1 Knapsack Problem divides the problem

into “sub-problems”. First, the algorithm determines whether or not to place the item of

greatest value in the knapsack [3]. A that point, there are fewer items remaining for

consideration. This process is repeated continually with recursion until the knapsack is

filled without exceeding the size constraint [3]. The average runtime for the dynamic

programming approach to the 0-1 Knapsack Problem is O(nK), where K is the size

constraint on the knapsack and n is the number of items [1].

3 Branch and Bound

There are two predominant implementations of branch-and-bound: breadth-first, and

best-first. We implemented each of these approaches to the 0-1 Knapsack Problem.

3

3.1 Breadth-First

The breadth-first approach uses a queue to hold potential nodes of items according to

their potential increase to the overall value of the knapsack (bound). This approach

considers whether or not a node is promising according to whether or not the value of the

knapsack would be greater if this item were to be placed in without exceeding the size

constraint. However, once the algorithm has traversed a path, it backtracks to the last

parent where the bound was still considered promising and evaluates the other children

[3]. Because of this, sections of the state-space-tree on which the algorithm is executed

are considered when they could have been eliminated prior to traversal.

3.2 Best-First

The best first approach utilizes a state-space-tree which consists of an initial state, a goal

state, intermediate states, and transforming operators with pre-conditions and post-

conditions [4]. For the 0-1 Knapsack Problem, the initial state is the empty knapsack, the

goal state is the optimized knapsack within the size constraint, and the intermediate states

are the various states of the knapsack with different item combinations but have not

reached optimization [3].

The best-first algorithm eliminates unnecessary path traversals in the state-space-tree

using the bounds on the nodes. These bounds indicate whether or not the traversal is

promising; if the bound is greater than the total value of the root, it is considered

promising. After this, the algorithm traverses the child that is most promising and

continues this process until the solution cannot be further optimized. Unlike breadth-first,

best-first does not traverse each child before eliminating the parent node. However, with

best-first, the most promising traversal is not always the optimal solution; in many cases

the algorithm has to backtrack and find a different path within the state-space-tree [3].

In summary, the key idea behind this algorithm is to calculate whether or not a

combination of items is promising, then traverse the path and backtrack according to

whether or not the size constraint is violated or more promising nodes appear.

4 Algorithm Description

We considered a variety of sources and implementations when exploring the algorithm;

we decided that the work of Richard Neapolitan best suited our understanding of the

branch-and-bound algorithm [3]. We adopted the general ideas behind the best-first

implementation and the bound function implementation as described below.

4

The algorithm works with a linked-list of specified items which can be randomly

generated or manually created, and an integer representing the size constraint on the

knapsack. Each item is defined with its size and value. The state-space-tree consists of

nodes whereby each node represents the current status of the knapsack with an integer

representing the value of the items and a linked-list of the items in the knapsack.

The core of the algorithm is a ‘while’ loop that runs until the linked-list of nodes,

considered a priority-queue, is empty. During the first run of the loop, the first node in

the linked-list is retrieved and its values are held in a node variable, v. Then, a second

node, u, is initialized to be empty and its values are calculated according to the values of

v. The level, within the state-space-tree, of u is calculated according to the level of v; the

level of u is always one greater than the level of v. The size of node u is equivalent to the

sum of the size of v and the level position of u. The final component of node u is

computed according to whether or not observing another node along the current traversal

is promising; that is, whether or not the total size of the considered items is within the

size constraint, and the value is greater than the value at the root of the current subtree.

Once these calculations are performed, the size of u is compared with the size constraint

on the knapsack, and the value of u is compared with the previously obtained maximum

value. Then, the new maximum value is set accordingly. The algorithm then adds node u

to the linked-list if its potential value is greater than the previously calculated maximum

value. Before the while loop starts its next run, u is reset, and the component calculations

are performed again.

After the while loop reaches its terminating condition, the maximum value is printed.

4.1 Pseudocode

ALGORITHM BestFirstBranchAndBound (LinkedList <Items> Items, int

MaxSize)

//Input: A linked-list (priority-queue) of items for

consideration

 The size constraint on the knapsack (MaxSize)

//Output: The maximum value of the knapsack found by the

algorithm

//Precondition: The items are organized according to input

//n = number of items

PriorityQueue<Node> PQ //initialized empty

Size[n], Value[n]

Node u, v (parameters: level, value, weight, bound)

MaxValue = 0

Initialize the root, v(level  -1, all else 0)

5

PQ.insert(v) //insert if possible

while (PQ is not empty)

 v  PQ.deleteMax(“pop” the first node)

 reset_u

 if(u.size does not exceed MaxSize & u.value exceeds MaxValue)

 Max Value  u.value

 if(u.bound exceeds Max Value)

 PQ.insert(u)

 reset_u

 if(u.bound exceeds Max Value)

 PQ.add(u)

return Max Value

Method reset_u

 u = empty

 if(v.level = -1)

 u.level  0

 else if (v.level != (n-1))

 u.level  v.level + 1

 u.size  v.size + Size[u.level]

 u.value  v.value + Value[u.level]

 u.bound  Bound(MaxSize, n, Size, Value)

The branch-and-bound algorithm has the potential to generate all possible combinations

of items depending on bound calculations of items [3].

4.2 Memory and Time Requirements

The algorithm requires a linked-list to store the potential items, a linked list or priority-

queue to store the item combination nodes, and two arrays to hold the size and values of

each item. Therefore, the memory requirements are O(N), where N is the number of

items in the knapsack. While the runtime of the algorithm is exponential in the worst

case, the real time of the algorithm is considerably quick due to the pruning of the search

tree [3].

5 Results

Experimentation was performed utilizing three approaches: randomized generation,

manual input, and verification of previous work. For the randomized generation

6

experiments, we developed a program to generate potential items in large quantities and

output the resulting optimized value. The manual input and verification testing required

little in the way of additional programming. Most of the data sets were unique in that they

did not come from other sources; however, for the purpose of ensuring accuracy with the

algorithm, a single data set from Richard Neapolitan’s work [3] was used. This seemed

appropriate given that many components of our algorithm were inspired by his

pseudocode. The randomized tests served to test the time requirements given various

values for each significant aspect of the randomized generator. The input and verification

tests were performed to exploit weaknesses of the branch-and-bound algorithm and test

its accuracy. The following tables and figures give some insight into the obtained results.

5.1 Randomized Sets

Table 1: Changes in maxSize (size of the knapsack)

Table 2: Changes in n (number of potential items)

Table 3: Changes in the upper bound for item value

Number of

Items (n)

Size of Knapsack

(maxSize)

Size Upper

Bound

Value Upper

Bound Time

Output

(maxValue)

100 100 10 10 12749 149

100 70 10 10 47 118

100 50 10 10 15 92

100 20 10 10 0 29

Number of

Items (n)

Size of Knapsack

(maxSize)

Size Upper

Bound

Value Upper

Bound Time

Output

(maxValue)

50000 50 10 10 3000 101

10000 50 10 10 78 99

5000 50 10 10 16 87

500 50 10 10 0 104

120 50 10 10 0 78

Number of

Items (n)

Size of Knapsack

(maxSize)

Size Upper

Bound

Value Upper

Bound Time

Output

(maxValue)

1000 500 100 200 0 2075

1000 500 100 80 0 1006

1000 500 100 70 16 781

1000 500 100 60 0 539

1000 500 100 50 16 472

1000 500 100 40 0 326

7

Table 4: Changes in the upper bound for item size

Based on these results, it appears as though the time required to compute the optimal

value increases in several situations: as the size upper bound decreases, as the number of

items increases, and as the size of the knapsack increases. While the results from Table 3

are not insignificant, they do not give much insight into the effect of value on runtime.

5.2 Manual Input / Verification Testing

Watch - Value: 40; Size: 2
Painting - Value: 30; Size: 5
Television - Value: 50; Size: 10
Doll - Value: 10; Size: 5
The optimal solution for the items given, and the size constraint 16 is: 90

Figure 1: Verification data set – from Neapolitan

Doll - Value: 8; Size: 2
Painting2 - Value: 18; Size: 6
Painting - Value: 20; Size: 7
Brick - Value: 2; Size: 18
Television - Value: 30; Size: 18
The optimal solution for the items given, and the size constraint 25 is: 46

Figure 2: Exploiting the “cropping” tendency of the branch-and-bound algorithm (should

be 56)

The results from Figure 1 were expected given that the dataset was from Neapolitan’s

work [3]. Figure 2 concerns a dataset designed for the purpose of testing the algorithm,

its results were verified manually.

6 Conclusion

To summarize our research, bar the dynamic programming approach, the branch-and-

bound approach to the 0-1 Knapsack Problem is comparable in terms of runtime to

various other algorithms. The runtime of branch-and-bound is greatly affected by the

Number of

Items (n)

Size of Knapsack

(maxSize)

Size Upper

Bound

Value Upper

Bound Time

Output

(maxValue)

1000 500 150 100 0 620

1000 500 80 100 47 1010

1000 500 70 100 16 1566

1000 500 60 100 1110 1411

1000 500 50 100 15937 1996

8

number of potential items, the size constraint on the knapsack, and the size of each item.

And, finally, our implementation was successful in providing a solution to the 0-1

Knapsack Problem, given that branch-and-bound is renowned for sometimes selecting a

solution that is not the optimal solution. Regarding further work, it seems as though an

organizational function would be useful for inserting the potential items into the linked-

list in such a way that the optimal is achieved more often if not every time the algorithm

is run.

Acknowledgments

Many thanks to Dr. Lydia Sinapova for assistance in research, and to Dr. Mark Brodie,

who evaluated the research paper and provided feedback with regards to its initial draft.

References

[1] Goddard, S. (n.d.). Dynamic programming 0-1 knapsack problem [PowerPoint slides].

Retrieved from

http://cse.unl.edu/~goddard/Courses/CSCE310J/Lectures/Lecture8-

DynamicProgramming.pdf

[2] Greedy algorithms [PowerPoint slides]. Retrieved from

 http://www.radford.edu~nodie/classes/360/greedy.html

[3] Neapolitan, R. (2014). Foundations of Algorithms (5th ed.). Jones & Bartlett

 Learning.

[4] Sinapova, L. (2013). Algorithm design paradigms [PDF document]. Retrieved from

 faculty lecture notes website:

 faculty.simpson.edu/lydia.sinapova/www/cmsc250/LN250-

 2013/DesignParadigms.pdf

