

Examining The Prevalence and The Historical

Trends of Indirect Function Calls in Open Source

Systems:

A Case Study, gcc 2001-2011

Saleh M. Alnaeli

Computer Science Department

University of Wisconsin-Colleges

Menasha, Wisconsin 54952
saleh.alnaeli@uwc.edu

Melissa Sarnowski

Computer Science Department

University of Wisconsin-Fox Valley

Menasha, Wisconsin 54952
SARNM6825@students.uwc.edu

Abstract

An empirical study that examines the prevalence and distribution of indirect function

calls using function pointers and virtual methods in general-purpose software systems is

presented. The study is conducted on a well-known, large-scale software system,

gcc.4.5.3, comprising over four million lines of code. The system is analyzed and the

number of function pointer and virtual method calls is determined. Additionally, function

pointers are categorized based on their type and the complexity they pose when

conducting inter-procedural static analysis. The results show that more often than not,

function pointers are used in situations that make analysis very difficult (i.e., NP-hard).

Thus, conducting accurate program analysis (e.g., program slicing, call graph generation)

becomes very costly, or impractical, to conduct. Analysis of the historical data over a

ten-year period of gcc shows that there is an increase in the usage of both calls using

function pointers and virtual methods over its lifetime, thus posing further problems for

inter-procedural analysis.

1

1 Introduction
One of the patterns used by software developers when writing in C/C++ that is known to

pose huge challenges for software engineers to statically analyze programs is indirect

function calls via function pointers [1, 2] or virtual methods [3]. A single function

pointer can alias any function with the same signature, and a virtual method can alias

methods with the same signature in derived classes. So, precisely knowing which

specific function is invoked can only be done at run time. When software engineers

conduct static analysis, an approximated, but still valid, approach is used to resolve all

function pointers/virtual methods in the system and then conservatively assume that all

potential functions/methods are invoked in the studied system. Consequently, more

complexity and inaccuracy is imposed to static analysis undertaken. In many studies, the

problem is shown to be NP-hard based on the ways function pointers are declared and

manipulated in a system [1, 2]. For accurate inter-procedural analysis, function-alias

analysis is a very important step that should be properly handled [4].

For example, in the context of automatic parallelization, a for-loop that contains a

function call with a side effect is considered un-parallelizable i.e., cannot be parallelized

using OpenMP. In order to safely analyze for parallelism, the set of possible targets of a

function-pointer call must be determined. If a side effect exists for one possible target,

parallelization may not be safe, resulting in a conservative approach to inhibit

parallelization [3, 5]. Therefore, a conservative, yet safe approach is to assume that all

calls using function pointers and virtual methods carry side effects. However, such an

approach might not be practical in other software-engineering problems where the

accuracy is a crucial concern (e.g., slicing, transformation.) and may pose a negative

impact.

Additionally, programs written in object-oriented languages, such as C++ or Java, may

have challenges in inter-procedural analysis as well. That is, static analysis is even more

difficult because of object inheritance and function overloading through methods [2].

Virtual methods in an object oriented programming language can be overridden by

derived classes [6]. For adequate analysis, virtual method calls need to be resolved, and

literature is rich with algorithms for this purpose [3, 7-9]. In the case of safe analysis for

parallelization, the set of possible targets of a virtual method call must be determined, and

any calls made transitively must be included in the analysis for reliable results.

With the increased use of open source model in programming, we become motivated to

conduct a deeper study that empirically examines the prevalence and distribution of

indirect calls conducted via function pointers and virtual methods in general-purpose

software systems, which can help software engineers properly estimate the complexity

and challenges expected when static analysis is proposed. This can also play an

important role in monitoring how systems get more complex as they evolve over time.

To the best of our knowledge, no historical study has been conducted on the evolution of

function pointers and virtual methods in open-source systems. We believe that an

extensive comprehension of the nature of function pointers and virtual usage is needed

2

for a better understanding of the problem and obstacles that must be considered when

static analysis is conducted.

In this study, we empirically examine one of the well-known large-scale open source

software systems in both academia and industry, namely gcc. The history of the gcc

system is examined based on multiple metrics. The number of function pointers, virtual

methods, and indirect calls is determined for each release throughout a 10-year period

(2001-2011). Then, the classification of function pointer types is determined (Global,

local, Formal parameter, Class member, and array of function pointers). This data is

presented and analyzed to uncover trends and general observations in gcc as a case study.

The analysis shows if there is a trend toward increasing or decreasing growth on the

number of function pointer types and virtual methods in gcc.

The paper is organized as follows. Background and related work are presented in section

2. Section 3 presents function pointer types and is followed by section 4, which talks

about virtual methods and their usage. The approach used in this study for detecting

function pointers and virtual methods is introduced in section 5. A case study we

designed and conducted, along with results and findings, is presented in section 6.

Examination of the change in the presence of calls conducted via both function pointers

and virtual methods over a 10-year period is presented in section 7. A discussion about

our findings and limitations of this study and the work is finally concluded in section 8.

2 Related Work
There are many algorithms used for static analysis in the presence of function pointers

and virtual methods. Our concern in this study is the usage of function pointers and

virtual methods, in particular for open source software systems, and how they evolve

over time for better understanding and uncovering any trends or evolutionary patterns.

That is, we believe those patterns and trend can be valuable information in determining

and predicting solutions and effort required to better statically analyze those systems

written in C/C++ languages. As a case study, gcc is used in this investigation.

The bulk of previous research on this topic has focused on detecting and resolving

function pointers and virtual methods in inter-procedural analysis. Most of these works

concentrate on problems such as the construction of call graphs, particularly in the

context of static program analysis [3, 7-9]. However, no study has been conducted on the

evolution of open source systems over time in the inter-procedural analysis context in the

presence of function pointers and virtual methods.

Ben-Chung et al. [2] conducted an empirical study of function pointers in the complete

SPECint92 and SPECint95 benchmarks. They evaluate the resolution of function

pointers and the potential program transformations enabled by a complete call graph.

They have shown samples of function-pointer usage in the benchmark they studied, as an

attempt to explore the issues that might be critical in the design of a complete inter-

procedural pointer-analysis algorithm. They have observed that the call graph

construction problem has become an inter-procedural pointer-analysis problem as all

pointers need to be analyzed and resolved for correct results.

3

Ryder et al [1] examined multiple systems from different domains by statically gathering

empirical information on C function-pointer usage as an attempt to better predict

appropriate inter-procedural analyses required for C programs. They have classified and

categorized the programs based on ease of call multi-graph construction with the

presence of function pointers. They observed that calls to globally-declared function-

pointer variables far outnumber the calls to any other kind of function pointer. This

agrees with our observations for most of the systems we studied. However, the study was

done on relatively small to medium scale C systems and virtual methods were not

considered.

Here, we empirically examine a large scale open source system to determine what

roadblocks exist for development of automated tools for better static and inter-procedural

analysis. Additionally, we show how gcc system evolves overtime in terms of expected

difficulty of analysis posed by function pointer/virtual method usage.

3 Function Pointers
Many studies have agreed that the ways function pointers are declared and used in

software systems can play a big role in the degree of complexity of inter-procedural and

static analysis [1]. For instance, the broader the scope of a function pointer (e.g., global

in the worst case) within the system, the higher the complexity is (NP-hard in many

cases) in conducting static analysis. In this section, the different types of function

pointers are discussed. The different types of function pointers that cause in NP-hard

analysis are presented in the following sections [10, 11] with the focus being on these

types of function pointers.

3.1 Global Function Pointers

Global function pointers include all function pointers declared at the file scope of a

program, i.e., outside any function body. This is shown in Figure 1. This includes

external function pointers, e.g., the function line 1 in Figure 1. Global function pointers

are one of the types that, if used, cause in NP-hard analysis [1]. In this study, the number

and percentage of the function calls via global function pointers is counted. Additionally,

a historical study is conducted in the studied system in order to discover how it evolves

over time in terms of this type usage and distribution.

3.2 Array of Function Pointers

Arrays of function pointers are usually used in general purpose software systems,

especially the systems developed in the language C. It is known to be amongst function

pointer types that cause in NP-hard analysis as well [1]. An example is shown in Figure

1 line 14. The number and percentage of the function calls via arrays of function pointers

is determined and counted. The study shows the evolution of function pointer array

usage in gcc, which we targeted in this study as a case study.

3.3 Function Pointer Structure Fields

The number of all function calls conducted indirectly using function pointers that are

structure fields is determined and counted. Additionally, distribution of indirect calls is

4

release Language KLOC Files Function Pointer Virtual Method

gcc4.5.3 C/C++ 4,029 40,638 10,653 32,975

Table 1. gcc System used in the study.

1: extern "C" int (*fpEXT1)(int&,int);

2: int (*fpEXT2)(int&,int);

3: typedef int (*FUNC) (int &, int);

4: FUNC fp;

5: class ClassFPtr {

6: public:

7: typedef int (A::*_fVar)();

8: fVar fvar;

9: _fVar fvar2;

10: void setFvar(_fVar afvar) {

11: fvar = afvar; }

12:};

13: ClassFPtr ObjFPtr;

14: int (*fp1[2])(int&,int);

15: struct srct{

16: void (*fptrS)();

17: int (*fptrArray[12])();

18:};

Types of function pointers detected:

1: fpEXT1 external function pointer

2: fpEXT2 Global function pointer

3: FUNC typedef-ed function pointer

4: fp function pointer of type FUNC in 3

7: _fVar class member typedefed

8: fVar Of type _fVar

9: fVar2 Of type _fVar

10: afVar - formal parameter of type _fVar

13: objFPtr - instance of class with Fptr

14: fp1 Array of function pointer

15: fptrS structure member

16: fptrArray array of function

17: pointer in structure

Figure 1. Examples of function pointers that cause analysis to be NP-Hard, and are

detected by the tool VirFptrStat

studied which includes the calls done through function pointers that are structure fields.

Examples of this are shown in Figure 1 in line 16 as a field in the local structure srct. It is

5

also known to be amongst function pointer types cause in NP-hard analysis[1] and it is

commonly used with C/C++ code.

3.4 Function Pointer Class Members

A function pointer can be a member of a class. Classes that contain at least one function

pointer as a member are all detected and counted. Additionally, all indirect function calls

conducted with function pointer class members are counted and compared to other types.

They are somewhat similar to the structure members in that they can be used to create

objects that can be used to invoke a function indirectly. Function pointer class members

are also known to cause in NP-hard analysis and thus they are consider in this study as

well [1, 12]. Lines 7, 6 in Figure 1 are examples of this type.

3.5 Function Pointers Formal parameters

Function pointers can be used as formal parameters for both functions and methods and

are commonly used in C/C++ software systems. They are used to pass functions as

arguments to functions and methods. This type is also considered as one of the function

pointers that cause in NP-hard analysis, so we considered this type in our study. The

number of calls that are conducted by formal parameters is counted and its usage

percentage is determined as well.

4 Virtual Methods
Calls to virtual methods increase the complexity of conducting static analysis in a similar

manner as calls to function pointers [3, 7, 13, 14]. The use of virtual methods is basically

a constrained use of function pointers. While static analysis in the presence of virtual

methods is somewhat simpler than calls via function pointers, it still poses a difficult

problem and produces a large increase in complexity (NP-hard) [3, 7, 13]. In some cases,

the analysis may not even be possible since the target of a call is unknown at compile

time.

Figure 2 presents virtual method examples as declared in a class. In this study, we count

and determine the number of virtual method declarations and all function calls that are

carried out using virtual methods. The growth of virtual method usage over time is also

presented in Section 7.

5 Detection of Function Pointers and Virtual Methods
We now describe the methodology used to detect the usages of function pointers and

virtual methods and to collect the data for our case study.

In this study, function pointers are divided into two categories. The first category type is

function pointers that are known to cause in NP-hard analysis [1] (e.g. Global function

pointers). Such a function pointer could be one of the following types: global function

pointers, array of function pointer, function pointer class member, function pointers as

formal parameters, or structure member. Virtual methods are all considered in this study

as they are known to cause in NP-hard analysis [7, 13, 14].

6

Virtual methods are identified using their declarative directive virtual. Our tool does not

miss any virtual methods, resulting in both complete precision and recall.

1: class Base {

 protected:

 string ob_Name;

 Base(string strName): ob_Name(strName){}

 public:

 string GetName() { return ob_Name; }
 virtual const string action(){ return "Default"; }

 };

2: class Obj1: public Base {

 public:

 Obj1(string strName): Base(strName){}

 virtual const string action()

 {return "predefined name";}

 };

3: class Obj2: public Base {

 public:

 Obj2(string strName): Base(strName) {}

 virtual const string action() {

 string userEntery;

 cout<< " enter a name > ";

 cin>> userEntery;

 ob_Name =userEntery;

 return "user entered"; }

 };

void Report(Base &rAnimal) {

 cout << rAnimal.GetName() <<

 " is "<< rAnimal.action() << endl;

}

4: int main()

{ Obj1 iObj1("nameObj1");

 Obj2 iObj2("");

 Base* rAnimal; int sel;

 cout<<" enter 1 or 2 "; cin>>sel;

 if (sel==1)

 rAnimal = &iObj1;

 else

 rAnimal = &iObj2;

 for(int i =0; i<10; i++)

 Report(*rAnimal);

} // end of method main

Figure 2. Virtual Method examples as declared in classes and its inherited classes

detected by VirFptrStat

We developed VirFptrStat, a tool to statically gather empirical information about function

pointer and virtual method usage. When referring to VirFptrStat, we consider the usage

7

in regards to function calls that are conducted via function pointers and virtual methods.

That is, VirFptrStat statically extracts function pointers and virtual methods by both

declaration and most importantly calls. All source code files are analyzed to determine if

virtual methods or function pointers (declarations or calls) exist. If these do exist, then

we count the function pointers that fall into the category of types that cause in NP-hard

analysis. First, we collect all files with C/C++ source-code extensions (i.e., c, cc, cpp,

cxx, h, and hpp). Then, we use the srcML (www.srcML.org) toolkit [15] to parse and

analyze each file.

VirFptrStat, analyzes the srcML to search the parse tree information using lxml from the

lxml toolkit supported by .NET framework. In Python, we use the lxml.etree, a XML

toolkit which is a Pythonic binding for the C libraries, libxml2 and libxslt. It combines

the speed and XML feature completeness of these libraries with the simplicity of a native

Python API, mostly compatible with ElementTree API [Behnel 2014]. That is, it has a

similar implementation to SAX, where huge files can be easily read in chunks for better

implementation with a limited number of resources. The tool is used to identify every

function pointer and virtual method in a system. If a function pointer is determined to be

among the types that cause in NP-hard analysis, it is recorded, otherwise it is

distinguished from the hard type’s number and recorded as another category.

Once in the srcML format, VirFptrStat iteratively finds each virtual method and function

pointer and then analyzes the function pointers to find the different types. A count of

each function pointer or virtual method per class is also recorded. It also records the

number of hard function pointers found. The final output is a report of the number of

hard function pointers and virtual methods and their distribution in gcc. Our tool,

VirFptrStat, detects all types of function pointers whenever they are present in the code.

Figure 1 contains examples of the detection of these types of function pointers. Pointers

to member functions declared inside C++ classes are detected as well. Locally declared

function pointers (as long as they are not class members, in structures, formal parameters,

or an array of function pointers) that are defined in blocks or within function bodies are

considered as simple or typically resolved pointers.

6 Findings and results
We now study the presence, usage, and distribution of function pointers types and virtual

methods of gcc.4.5.3, which is a large-scale, open-source software project. Usage means

the calls conducted via function pointers and virtual methods. Table 1 presents some

information about gcc, including the version, number of files, and LOCs. Note that since

gcc is developed in C/C++/Java languages, it does use function pointers in addition to

virtual methods. Some information about the distribution of all function pointer types

that are statically declared in gcc4.5.3, as well as the number of virtual methods, is

presented in Figure 3 and Table 1 respectively.

Our study focuses on three aspects regarding function pointers and virtual methods. The

first aspect we focus on is the usage of function pointers and virtual methods along with

their distribution in gcc. By usage we mean that all function calls that were done via

function pointers. This distribution can be used to evaluate the expected complexity of

8

the studied system, gcc, when static analysis is conducted. That is, if gcc uses the

function pointer types that cause in NP-hard analysis more frequently than other types

that do not cause in NP-hard analysis, then the indication is that the system is potentially

difficult to statically analyze using a compiler or other automated tools. Second, we

examine which function-pointer type is the most prevalent amongst types that cause in

NP-hard analysis in gcc4.5.3. Finally, we examine how the presence of function pointers

and virtual methods change over the lifetime of a software system. We propose the

following research questions as a more formal definition of the study.

R1: What is a typical number and percentage of function calls that are conducted via

virtual methods and function pointer types that cause in NP-hard analysis in open source

system such as gcc.4.5.3?

R2: Which function pointer types amongst those that cause in NP-hard analysis are the

most prevalent?

R3: Over the history of gcc system, is the presence of virtual methods and function

pointers that cause in NP-hard analysis increasing or decreasing?

Question R3 concerns the growth of virtual methods and function pointers that

cause in NP-hard analysis as we believe that they pose difficulties in any inter-procedural

or static analysis performed on a large-scale software system. We now examine our

findings within the context of these research questions.

6.1 Number and Percentage of Calls

The results collected for gcc4.5.3 are presented in Table 2. We give the number of

function pointer calls along with the number of virtual method calls. Figure 4 shows the

percentage of function pointer calls that cause in NP-hard analysis computed over the

total number of detected function calls.

Figure 3 .Percentage distribution of function pointer types that are statically declared in

gcc.4.5.3

As can be seen, the overall average of detected function pointers that cause in NP-hard

analysis is 93% in gcc 4.5.3(by Dec 2011). That is, on average, most of the function

pointer calls in gcc can potentially cause big challenges for tools and compilers that use

static analysis and inter-procedural approaches. This addresses R1.

9

Virtual function calls were also examined in this study. We have counted the number of

virtual function calls in gcc.4.5.3, including the count inherited virtual functions. Table 2

presents the number of virtual function calls in gcc. gcc has 328 function calls conducted

by virtual methods, whereas 4,131 function calls are conducted via function pointers.

This also answers R1.

 Y
ea

r

Ways Functions Are Indirectly Called

Virtual

Methods

Function

Pointers

NP-Hard

Types

Global

Function

Pointers

Structure

Field

Function

Parameters

Class

Member

Static

Arrays

2001 194 951 900 531 243 29 89 8

2002 195 718 665 510 17 40 93 5

2003 210 2,132 2,014 1,767 39 100 103 5

2004 212 2,593 2,469 2,061 118 149 136 5

2005 225 2,913 2,801 2,403 117 144 131 6

2006 206 2,896 2,774 2,357 144 125 142 6

2007 214 3,076 2,940 2,474 154 155 151 6

2008 220 3,463 3,319 2,720 175 253 165 6

2009 236 3,429 3,273 2,601 184 298 184 6

2010 295 3,850 3,570 2,831 215 329 189 6

2011 328 4,131 3,852 3,064 225 366 191 6

Table 2. gcc collected results, 2001 to 2011, (indirect function calls via virtual methods

and function pointers that cause in NP-Hard problems)

6.2 Function Pointer Types Distribution

We now address R2 and present the details of our findings on the distribution of calls

conducted via function pointer types that cause in NP-hard analysis. Figure 5 presents

the average percentage of each function pointer type’s usage (calls) that occurs in the gcc

4.5.3 system. It has multiple function pointer types. As can be seen, global function

pointers are by far the most prevalent in gcc.4.5.3 at 80%. Then, function pointers follow

it as formal parameters at 9%, followed by data function pointers as function pointers that

are structure fields 6%, which are followed by function pointer class members at 5%, thus

addressing R2. Additionally, we lumped the function pointer types that cause in NP-hard

analysis in order to show the presence of function pointer types that cause in NP-hard

analysis versus other function pointer types, and results are presented in Figure 4. We

see that gcc.4.5.3 has a larger average percentage of function pointer types that cause in

NP-hard analysis, at 93%, than other types, which are at 7%. Figure 5 shows the

10

percentage of function pointer types that cause in NP-hard analysis for gcc.4.5.3

(addressing R2 as well). The figure indicates that the global function pointer type is

prevalent.

Figure 4 . Average percentage of calls via function pointer type that cause in NP-hard

analysis vs. others

Clearly, function pointer types that cause in NP-hard analysis exist in all categories. In

particular, it is apparent that function pointers as global variables present the most serious

challenges. That is, it appears that resolving this problem and finding a form of

refactoring to this type will have a very big impact on the static analysis of common

software applications. On average, the next most prevalent function pointers are those

that occur as structure fields and formal parameters, followed by class members, with

minor occurrences of arrays of function pointers.

The main observation here is that gcc extensively uses function pointers that are known

to cause in NP-hard analysis in indirect calls compared to the other types as shown in

Figure 3. That is, if we have a means to resolve this problem, gcc will obviously be

greatly affected, making static analysis easier.

6.3 Virtual Methods and Function Pointers declarations

To better address R2 aside from the distribution of calls via virtual methods and function

pointer distribution, gcc was examined with respect to virtual method and function

pointer declarations. Table 1 and Figure 3 present the number of virtual methods and

function pointers statically declared in the gcc.4.5.3 system.

This includes all definitions of function pointers as parameters, in structures, in arrays,

and as global declarations [1]. In gcc.4.5.3, 10,653 function pointer static declarations

were detected; 10,332 of these were types that cause in NP-hard analysis. On the other

hand, gcc has 32,975 virtual methods (including pure virtual methods).

7 Historical Trends
To address R3 we examined a 10-year period of gcc from 2001 to 2011. Our goal is to

uncover how each gcc system evolves in the context of static and inter-procedural

analysis potential difficulties caused by the usage of virtual methods and function

11

pointers. Here, we measure this by examining the change of virtual method and function

pointer calls in gcc. Additionally, we put more focus on the change in the presence of

calls via function pointer types that cause in NP-hard analysis.

Figure 5 . Distribution of average of percentage of calls via function pointer types that

cause in NP-hard analysis

We believe that such information could lead to recommendations for refactoring and

improving large-scale software systems for more efficient and less complex inter-

procedural and static analysis, if properly adapted. The change in the number of function

calls conducted with virtual methods and function pointers along with the number of each

type of the function pointers that cause in NP-hard analysis were computed for each

version in the same manner as we described in the previous sections. These values were

aggregated for each year so the system could be compared on a yearly basis. The system

was updated to the last revision for each year. As before, all files with source code

extensions (i.e., c, cc, cpp, cxx, h, and hpp) were examined and their classes, structures,

functions, virtual methods and function pointers were then extracted. The Change in the

number of function pointer calls of all categories and types for gcc is presented in Table

2. During the 10-year period, gcc shows a rising trend during the duration. A

comparison of these two gcc versions (2002-2003) shows that the total number of

function pointer calls in the system increased from 718 to 2,132, an almost 200%

increase.

Table 2 also presents the number of virtual method calls for gcc, since it uses the object-

oriented aspects of C++. During the 10-year period, gcc shows a fairly increasing trend

during the duration. Figure 6 presents the percentage of function calls that are conducted

using function pointer types that are known to cause in NP-hard analysis. During the 10-

year period, gcc shows a relatively flat trend during the duration. The figure also

presents the percentage of function calls via global function pointers. During the 10-year

period, gcc shows a relatively flat trend during the duration. The figure shows the

percentage of function calls via function pointers that are structure fields for gcc. During

the 10-year period, gcc shows a relatively flat trend during the duration. The percentage

of function calls via function pointers that are declared as formal parameters are

presented. During the 10-year period, gcc shows a flat trend during the period.

12

Finally, Table 2 presents the number of function calls that are conducted by function

pointer class members in gcc. During the 10-year period it shows a fairly increasing

trend during the duration. A comparison of function pointer types shows that the total

percentage of global function pointer usage for function calls in gcc increases over time

and has been the dominant, thus the most prevalent, type. However, the other types have

a fairly flat trend on average, except for function pointers declared as parameters.

Figure 6. Evolution of calls via function pointer types that cause in NP-hard.

Much of this was due to an apparent large reengineering of the system to rely on global

variables and data structure (most likely for efficiency purposes). Results, observations,

and findings in regards to the observed trends are provided in the next section.

8 Discussion and Conclusion
This study empirically examines the difficulty expected from using calls via function

pointers and virtual method, which most of the time cause in NP-hard analysis when

static or inter-procedural approaches are applied [1, 7]. The study included a well-

known, large-scale open-source software system, gcc. That is, the system is a general-

purpose application. As expected, it needs to be statically analyzed both manually and

automatically as it does evolve over time. There are no other recent studies of this type

currently in the literature which include a historical study other than studies conducted by

the main investigator in the parallelization context. We empirically addressed research

questions. Obviously, the average percentage of calls performed through function pointer

types that cause in NP-hard analysis is significantly larger than other types. We can

easily infer that the studied systems require a lot of effort and work in order to facilitate

its analysis. This means there could be a substantial increase in difficulty should any

static and inter-procedural analysis be proposed for these systems, and thus poses

problems for this type of analysis.

The implication here is that static analysis and inter-procedural analysis of general-

purpose applications is getting more difficult to perform. That is, the cost of applying

static analysis over an entire system would normally be prohibitive. Thus, the

development and the design of tools and techniques that can reduce the usage of indirect

calls via function pointers and virtual methods may be worth the cost and effort for more

13

efficient, yet less complex, static analysis. However, this is dependent on many factors

including the architecture and programming style used in the system and the types of

computations taking place in these systems, as well as types of function pointers used.

Approaches, like the one used in [13], for eliminating function pointer and virtual method

calls should also be considered.

Our findings have an important implication to the problem of statically analyzing

general-purpose applications in the presence of indirect calls via special type function

pointers. We found that the most prevalent type is global function pointers. This is an

important finding because we can recommend developers to put more focus on this type

in order to eliminate its usage for better static analysis. That is, the empirical findings

show that global function pointers are the greatest roadblock to easier static and inter-

procedural analysis of general-purpose applications. In fact, we see in Figure 5 that the

vast majority of calls that are performed via global function pointers are amongst the

types that cause in NP-hard analysis (80%).

It appears that developing methods and techniques for removing global function pointers,

or changing their type, could potentially have a greater impact on the static analysis

process. Additionally, it will reduce the expected challenges posed by global function

pointers used in the system when tools and compilers are designed on the top of static

analysis techniques. Minimally, this implies that software engineers and developers need

to put more focus on addressing global function pointer type usage in general-purpose

software applications. Coding practices aimed at avoiding the common types, as found in

this study, can also be developed. Making developers more aware, via documentation or

automated methods, of parts of code that use indirect calls via function pointers and

virtual methods could also lead to more analyzable code. There are few pedagogical

approaches that highlight these types of coding techniques and few documented

approaches to decrease and eliminate virtual method and function pointer calls [13].

Our last research question (R3) addresses the prevalence of function pointers over the

history of a system. In short, we wanted to know if the percentage of calls via virtual

method and function pointer types that cause in NP-hard analysis are increasing or

decreasing. We found that a great deal of function pointer and virtual method usages

across most of the gcc releases show an increasing trend over time. Thus, we can surmise

that developers do not pay attention to the complexity posed when trying to simplify code

by providing a simple way to select a function to execute based on run-time values using

function pointers and virtual methods.

Finally, these findings cannot be generalized for all open-source systems since

more systems from different system domains should be analyzed and studied for a better

understanding of this problem in open-source software systems.

References

[1] B. G. R. Anand Shah "Function Pointers in C - An Empirical Study," Technical

Report1995.

14

[2] B.-C. Cheng and W. Hwu, "An Empirical Study of Function Pointers Using SPEC

Benchmarks," presented at the Proceedings of the 12th International Workshop on

Languages and Compilers for Parallel Computing, 2000.

[3] D. F. Bacon and P. F. Sweeney, "Fast static analysis of C++ virtual function

calls," presented at the Proceedings of the 11th ACM SIGPLAN conference on

Object-oriented programming, systems, languages, and applications, San Jose,

California, USA, 1996.

[4] M. Emami, R. Ghiya, and L. J. Hendren, "Context-sensitive interprocedural

points-to analysis in the presence of function pointers," presented at the

Proceedings of the ACM SIGPLAN 1994 conference on Programming language

design and implementation, Orlando, Florida, USA, 1994.

[5] S. Alnaeli, J. Maletic, and M. Collard, "An empirical examination of the

prevalence of inhibitors to the parallelizability of open source software systems,"

Empirical Software Engineering, pp. 1-30, 2015/05/28 2015.

[6] B. Stroustrup, "What is “Object-Oriented Programming”?," in ECOOP’ 87

European Conference on Object-Oriented Programming. vol. 276, J. Bézivin, J.-

M. Hullot, P. Cointe, and H. Lieberman, Eds., ed: Springer Berlin Heidelberg,

1987, pp. 51-70.

[7] B. Calder and D. Grunwald, "Reducing indirect function call overhead in C++

programs," presented at the Proceedings of the 21st ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, Portland, Oregon, USA,

1994.

[8] J. Dean, D. Grove, and C. Chambers, "Optimization of Object-Oriented Programs

Using Static Class Hierarchy Analysis," presented at the Proceedings of the 9th

European Conference on Object-Oriented Programming, 1995.

[9] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vall, #233, e-Rai, et al.,

"Practical virtual method call resolution for Java," presented at the Proceedings of

the 15th ACM SIGPLAN conference on Object-oriented programming, systems,

languages, and applications, Minneapolis, Minnesota, USA, 2000.

[10] S. Zhang and B. G. Ryder, "Complexity of single level function pointer aliasing

analysis," LCSR-TR-233, 1994.

[11] R. Muth and S. Debray, "On the complexity of function pointer may-alias

analysis," in TAPSOFT '97: Theory and Practice of Software Development. vol.

1214, M. Bidoit and M. Dauchet, Eds., ed: Springer Berlin Heidelberg, 1997, pp.

381-392.

[12] K. H. Bennett, V. Rajlich, and I.-F. o. S. T. 73-87, "Software maintenance and

evolution: a roadmap," in International Conference on Software Engineering -

The Future of Software Engineering Track, 2000, pp. 73-87.

[13] G. Aigner and U. Holzle, "Eliminating Virtual Function Calls in C++ Programs,"

University of California at Santa Barbara1996.

[14] H. D. Pande and B. G. Ryder, "Data-Flow-Based Virtual Function Resolution,"

presented at the Proceedings of the Third International Symposium on Static

Analysis, 1996.

[15] M. L. Collard, M. J. Decker, and J. I. Maletic, "Lightweight Transformation and

Fact Extraction with the srcML Toolkit," presented at the SCAM'11,

Williamsburg, VA, USA, 2011.

